
FINAL EVALUATION REPORT

Wang Government Services, Incorporated

XTS-300 STOP 5.2.E

NATIONAL

COMPUTER SECURITY CENTER

9800 Savage Road
Fort George G. Meade
Maryland 20755-6000

3 August 2000

Report No. CSC-EPL-92/003.E

Final Evaluation Report Wang XTS-300

This page intentionally left blank

ii
final: 3 August 2000

Final Evaluation Report Wang XTS-300
FOREWORD

FOREWORD

This publication, the Final Evaluation Report Wang XTS-300 is being issued by the National Computer
Security Center under the authority of and in accordance with DoD Directive 5215.1, \Computer Security
Evaluation Center." The purpose of this report is to document the results of the formal evaluation of Wang
XTS-300 operating system. The requirements stated in this report are taken fromDepartment of Defense
Trusted Computer System Evaluation Criteria , dated December 1985.

Approved:

3 August 2000
Director,
National Computer Security Center

iii
final: 3 August 2000

Final Evaluation Report Wang XTS-300
ACKNOWLEDGMENTS

ACKNOWLEDGMENTS

Team members included the following individuals, who were provided by the indicated organizations:

Jerome F. Myers
The Aerospace Corporation

Columbia, Maryland

Scott Barman
Louise Huang

Richard H. Murphy
J. David Thompson
Mitretek Systems
McLean, Virginia

Steve Monaco
National Security Agency
Fort Meade, Maryland

John G. Ata
James E. Knoke

Wang Government Services, Incorporated
Herndon, Virginia

Technical support for the Covert Channel Analysis was provided by:

Dr. Jonathan K. Millen Jerome F. Myers
The MITRE Corporation The Aerospace Corporation
Bedford, Massachusetts Columbia, Maryland

W. Olin Sibert
Oxford Systems, Inc.

Lexington, Massachusetts

The evaluation team acknowledges the great deal of e�ort put forth by previous evaluation team members,
including the production of much of this report:

Daniel P. Faigin Frank Belvin
Chao-Hsing Pian Brett C. Borgeson

The Aerospace Corporation Jean-Paul Otin
Los Angeles, California Shaan Razvi

Harold J. Wolfe
James Donndelinger The MITRE Corporation

The Aerospace Corporation Bedford, Massachusetts
Columbia, Maryland

Heidi K. Henson
Dr. Santosh Chokhani John A. Lawrence
Barbara A. Maguschak National Security Agency
The MITRE Corporation Fort Meade, Maryland

McLean, Virginia

iv
final: 3 August 2000

Final Evaluation Report Wang XTS-300
TABLE OF CONTENTS

TABLE OF CONTENTS

FOREWORD iii

EXECUTIVE SUMMARY xiii

1 Introduction 1
1.1 Evaluation Process Overview . 1
1.2 Document Organization . 3

2 System Overview 5
2.1 XTS-300 Background and History . 7

3 Hardware Overview 9
3.1 Introduction . 9
3.2 Central Processing Unit . 11
3.3 Memory on the XTS-300 . 15
3.4 Process Management . 21
3.5 Input/Output . 26
3.6 Primary XTS-300 Motherboard Chips . 26
3.7 Peripheral Controllers and Devices . 30
3.8 Multiprocessor Architecture and Environment . 36
3.9 Hardware Initialization . 38

4 Software Overview 41
4.1 Introduction . 41
4.2 Software Components . 41
4.3 Process Environment . 45

4.3.1 Untrusted Process Environment . 45
4.3.2 Trusted Process Environment . 46
4.3.3 TCB Interface . 46

4.4 System Initialization . 46
4.5 Security Kernel . 47

4.5.1 Security Kernel Architecture . 47
4.5.2 Kernel Entry and Return . 47
4.5.3 Segment Management . 48
4.5.4 Process Management . 50
4.5.5 Device Management . 51
4.5.6 Semaphores . 54
4.5.7 Memory Management . 54
4.5.8 Scheduling . 56
4.5.9 Support Modules . 56

4.6 TCB System Services (TSS) . 60
4.6.1 Process Management . 60
4.6.2 File System . 60

v
final: 3 August 2000

Final Evaluation Report Wang XTS-300
TABLE OF CONTENTS

4.6.3 File System Structure . 61
4.6.4 File System Layers . 61
4.6.5 Segment Manager . 61
4.6.6 Network . 61
4.6.7 Network Layers . 61
4.6.8 Network Component Communication . 62
4.6.9 Input/Output . 62

4.7 Trusted Software . 62
4.7.1 Trusted Processes . 62
4.7.2 Trusted Databases . 64
4.7.3 Trusted Commands . 64

4.8 Commodity Application System Services (CASS) . 78
4.8.1 Invoking CASS . 79
4.8.2 CASS Environment Components . 79
4.8.3 Interface Requirements . 81

5 TCB Protected Resources 83
5.1 Subjects . 83
5.2 Objects . 84

6 TCB Protection Mechanisms 85
6.1 Introduction . 85
6.2 Policy Enforcement Mechanisms . 85
6.3 Additional Supporting Protection Mechanisms . 89
6.4 Identi�cation and Authentication . 93
6.5 Set User ID Protection . 95
6.6 Audit . 95
6.7 Object Reuse . 99
6.8 Usage of Tapes under XTS-300 . 103

7 Assurances 105
7.1 TCB Layering . 105
7.2 Covert Channel Analysis . 105
7.3 Design Speci�cation and Veri�cation . 107
7.4 TCB Recovery . 108
7.5 Con�guration Management . 109
7.6 System Integrity . 110
7.7 Testing . 110
7.8 Architecture Study . 111

8 Evaluation as a B3 System 113
8.1 Discretionary Access Control . 113
8.2 Object Reuse . 114
8.3 Labels . 114
8.4 Label Integrity . 115
8.5 Exportation of Labeled Information . 116
8.6 Exportation to Multilevel Devices . 116
8.7 Exportation to Single-Level Devices . 117

vi
final: 3 August 2000

Final Evaluation Report Wang XTS-300
TABLE OF CONTENTS

8.8 Labeling Human-Readable Output . 118
8.9 Subject Sensitivity Levels . 119
8.10 Device Labels . 119
8.11 Mandatory Access Control . 120
8.12 Identi�cation and Authentication . 121
8.13 Trusted Path . 122
8.14 Audit . 122
8.15 System Architecture . 124
8.16 System Integrity . 125
8.17 Covert Channel Analysis . 126
8.18 Trusted Facility Management . 126
8.19 Trusted Recovery . 127
8.20 Security Testing . 127
8.21 Design Speci�cation and Veri�cation . 128
8.22 Con�guration Management . 129
8.23 Security Features User's Guide . 130
8.24 Trusted Facility Manual . 130
8.25 Test Documentation . 131
8.26 Design Documentation . 132

9 Evaluator Comments 135

A Evaluated Hardware Components 139

B Evaluated Software Components 143

C Draft Evaluated Products List Entry 145

D Acronyms 149

E Bibliography and References 155

vii
final: 3 August 2000

Final Evaluation Report Wang XTS-300
TABLE OF CONTENTS

This page intentionally left blank

viii
final: 3 August 2000

Final Evaluation Report Wang XTS-300
FIGURES

FIGURES

3.1 Intel 440 Motherboard Hardware Layout . 10
3.2 XTS-300 Use of Physical Address Space - Proprietary �gure removed 15
3.3 Selector-to-segment translation . 17
3.4 Logical-to-physical (or page) translation . 19
3.5 Privilege Level . 23

4.1 XTS-300 System Diagram { TCB Process . 42
4.2 XTS-300 System Diagram { Untrusted Process . 43
4.3 Process Virtual Memory Address Space - Proprietary �gure removed 44
4.4 Process Linear Memory Address Space - Proprietary �gure removed 44
4.5 Kernel Hierarchy Diagram - Proprietary �gure removed . 47
4.6 Segment Branch Table Entry (SBTE) - Proprietary �gure removed 48
4.7 Segment Management Data Structures - Proprietary �gure removed 48
4.8 Process Management Data: PDS and PLDS - Proprietary �gure removed 50
4.9 Active Process Table Entry (APTE) - Proprietary �gure removed 50
4.10 Disk and File System Structures - Proprietary �gure removed 52
4.11 Global Pool Usage . 55
4.12 TCB System Services Layering Diagram - Proprietary �gure removed 82
4.13 Overview of the STOP File System - Proprietary �gure removed 82
4.14 XTS-300 Network Components - Proprietary �gure removed 82

6.1 Hardware and Kernel Access Checks - Proprietary �gure removed 85
6.2 TCB System Services (TSS) Access Checks - Proprietary �gure removed 86

ix
final: 3 August 2000

Final Evaluation Report Wang XTS-300
FIGURES

This page intentionally left blank

x
final: 3 August 2000

Final Evaluation Report Wang XTS-300
TABLES

TABLES

4.1 Trusted Processes - Proprietary table removed . 63
4.2 Trusted Databases - Proprietary table removed . 64
4.3 User Trusted Commands - Proprietary table removed . 64
4.4 Operator Trusted Commands - Proprietary table removed . 68
4.5 Operator Trusted Commands - Proprietary table removed . 68
4.6 Administrator Trusted Commands - Proprietary table removed 75

xi
final: 3 August 2000

Final Evaluation Report Wang XTS-300
TABLES

This page intentionally left blank

xii
final: 3 August 2000

Final Evaluation Report Wang XTS-300
EXECUTIVE SUMMARY

EXECUTIVE SUMMARY

The security protection provided by the Wang Government Services, Incorporated XTS-300 system, when
con�gured in a secure manner as described in the XTS-300 Trusted Facility Manual [33], was eval-
uated by the National Security Agency (NSA). The security features of XTS-300 were examined against
the requirements speci�ed by the Department of Defense Trusted Computer System Evaluation
Criteria [11] dated December 1985 (TCSEC) to establish a candidate rating. The NSA evaluation team
determined that the highest class at which XTS-300 satis�es all the speci�ed requirements of the TCSEC is
B3. Therefore, XTS-300, when con�gured as described in the Trusted Facility Manual, was assigned a Class
B3 rating.

A system that is rated as a B3 class system provides a Trusted Computing Base (TCB) that enforces a
mandatory and discretionary access control policy. In addition, the TCB provides a trusted path to ensure
a reliable TCB-to-user communication connection, and an alarm mechanism to detect the accumulation of
events that indicate an imminent violation of the security policy. Separate administrator and operator roles
are de�ned. The least privilege principle was applied in the design of the TCB such that only those functions
requiring privileges have them. The TCB was analyzed and found to meet the minimization requirement
which reduces complexity, and to meet the layering, abstraction, and data-hiding requirement. The TCB
has been tested thoroughly and found to be resistant to penetration. The system developer also provided a
model and a descriptive top-level speci�cation on which the design of the TCB is based.

The XTS-300 is hosted on Intel Pentium II/III based server class systems, available in tower and rack-mount
form factors. The XTS-300 uses speci�c Intel-brand motherboards and industry standard ISA and PCI
peripheral cards or chips built into the motherboard. Symetric multi-processor (SMP) con�gurations are
supported. Support for SCSI peripherals such as hard disks, CDs, PCMCIA/PC-Card readers and tape
drives is provided in the STOP 5.2.E operating system. Support for video including UNIX's X-Windows is
provided. Network support for TCP/IP based 10 or 100BaseT networks is provided. Wang has developed
STOP 5.2.E, which is a multilevel secure operating system that runs on the XTS-300 hardware. The XTS-
300 provides a process virtual memory of up to four gigabytes, and uses the hardware protection level (ring)
mechanism in conjunction with software mechanisms for protection.

STOP 5.2.E is a multiprogramming system that can support up to 19 connections and 200 processes. STOP
5.2.E consists of four components: the Security Kernel, which operates in the most privileged ring and
provides all mandatory and a portion of the discretionary access control; the TCB System Services (TSS),
which operates in the next-most-privileged ring, and implements a hierarchical �le system, supports user I/O,
and implements the remaining discretionary access control; Trusted Software, which provide the remaining
security services and user commands; and the Commodity Application System Services (CASS), which
operates in a less privileged ring and provides the UNIX-like interface. CASS is not in the TCB and hence
was not thoroughly examined by the evaluation team.

XTS-300 is designed to provide a high level of security for many environments including specialized appli-
cations such as Email, FTP, and socket-based database synchronization guards which �lter the information
according to rules based on the security policy needed by a location. The system provides mandatory and
discretionary access control which allows for both a secrecy and integrity policy. The system provides for
user identi�cation and authentication used for policy enforcement through user identi�ers and passwords,
and individual accountability through its auditing capability. Data scavenging is prevented through the
control of object reuse. The trusted path mechanism is provided by the implementation of a Secure Atten-
tion Key (SAK). The separation of administrator and operator roles is enforced through integrity protected
operations.

xiii
final: 3 August 2000

Final Evaluation Report Wang XTS-300
EXECUTIVE SUMMARY

XTS-300 is marketed and supported by Wang. The evaluated version of the operating system is STOP 5.2.E,
which was released in April 2000.

xiv
final: 3 August 2000

Final Evaluation Report Wang XTS-300

Chapter 1

Introduction

In July 1987, the National Security Agency (NSA) began a product evaluation of XTS-200, a product of
HFS Incorporated, now Wang Government Services, Incorporated. The XTS-200, including STOP 3.1.E,
was formally evaluated and placed in the Evaluated Products List (EPL) in May of 1992.

In May 1993, a Future Change Review Board (FCRB) meeting was held to discuss the changes planned to
the XTS-200 and those planned for XTS-300. A security analysis team was then assigned to evaluate the
updated system (XTS-200). The XTS-200, including STOP 3.2.E, was formally evaluated and placed on the
EPL in January of 1994.

In September 1994, a security analysis team was assigned to evaluate the changes made for XTS-300. The
XTS-300 including STOP 4.1 was then placed on the EPL in July 1995. In October of 1995, STOP 4.1.a, a
minor revision, was also placed on the EPL.

In November 1996, a security analysis team was assigned to evaluate the changes made for XTS-300. The
XTS-300 including STOP 4.4.2 was then placed on the EPL in March 1998.

In January 1999, a security analysis team was assigned to evaluate the changes made for STOP 5.2.E. The
objective of the evaluation was to rate the XTS-300, including STOP 5.2.E, against the Department of
Defense Trusted Computer System Evaluation Criteria [11] (TCSEC), and to place it on the EPL
with a �nal rating.

This report documents the original results of the evaluation and subsequent analysis, which applies to the
system as available from Wang in April 2000.

Material for this report was gathered by the SA team from evaluation evidence for the XTS-300, including
STOP 5.2.E, and through documentation, interaction with system developers, and by extensive testing of
the system.

1.1 Evaluation Process Overview

The Department of Defense Computer Security Center was established in January 1981 to encourage the
widespread availability of trusted computer systems for use by facilities processing classi�ed or other sensitive
information. In August 1985 the name of the organization was changed to the National Computer Security
Center. In order to assist in assessing the degree of trust one could place in a given computer system, the
DoD Trusted Computer System Evaluation Criteria (TCSEC) was written. The TCSEC establishes speci�c
requirements that a computer system must meet in order to achieve a prede�ned level of trustworthiness. The
TCSEC levels are arranged hierarchically into four major divisions of protection, each with certain security-
relevant characteristics. These divisions are in turn subdivided into classes. To determine the division and
class at which all requirements are met by a system, the system must be evaluated against the TCSEC by
an NSA, Trusted Product and Network Security evaluation team.

1
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 1. INTRODUCTION

The NSA supports the creation of secure computer products in varying stages of development from initial
design to those that are commercially available. Preliminary to an evaluation, products must go through
the Proposal Review Phase. This phase includes an assessment of the vendor's capability to create a secure
system and complete the evaluation process. To support this assessment, a Preliminary Technical Review
(PTR) of the system is done by the NSA. This consists of a quick review of the current state of the system
by a small, but expert, team and the creation of a short report on the state of the system. If a vendor passes
the Proposal Review Phase they will enter a support phase preliminary to evaluation. This support phase
has two steps, the Vendor Assistance Phase (VAP) and the Design Analysis Phase (DAP). During VAP, the
newly assigned team reviews design speci�cations and answers technical questions that the vendor may have
about the ability of the design to meet the requirements. A product will stay in VAP until the vendor's
design, design documentation, and other required evidence for the target TCSEC class are complete and the
vendor is well into implementation. At that time, the support moves into DAP.

The primary thrust of DAP is an in-depth examination of a manufacturer's design for either a new trusted
product or for security enhancements to an existing product. DAP is based on design documentation and
information supplied by the industry source, it involves little \hands on" use of the system, but during this
phase the vendor should virtually complete implementation of the product. DAP results in the production
of an Initial Product Assessment Report (IPAR) by the NSA assessment team. The IPAR documents the
team's understanding of the system based on the information presented by the vendor. Because the IPAR
contains proprietary information and represents only a preliminary analysis by the NSA, distribution is
restricted to the vendor and the NSA.

Products that have completed the support phase with the successful creation of the IPAR, enter formal
evaluation. Products entering formal evaluation must be complete security systems. In addition, the release
being evaluated must not undergo any additional development. The formal evaluation is an analysis of the
hardware and software components of a system, all system documentation, and a mapping of the security
features and assurances to the TCSEC. The analysis performed during the formal evaluation requires \hands
on" testing (i.e., functional testing and, if applicable, penetration testing). The formal evaluation results in
the production of a �nal report and an Evaluated Products List entry. The �nal report is a summary of
the evaluation and includes the EPL rating which indicates the �nal class at which the product satis�es all
TCSEC requirements in terms of both features and assurances. The �nal report and EPL entry are made
public.

After completion of the Formal evaluation phase, products enter the rating maintenance phase (RAMP).
The rating maintenance phase provides a mechanism to extend the previous rating to a new version of
an evaluated computer system product. As enhancements are made to the computer product the ratings
maintenance phase ensures that the level of trust is not degraded.

Rating Maintenance is accomplished by using quali�ed vendor personnel to manage the change process of the
rated product during the maintenance cycle. These quali�ed vendor personnel must have strong technical
knowledge of computer security and of their computer product. These trained personnel will oversee the
vendor's computer product modi�cation process. They will demonstrate to the Trusted Product and Network
Security Evaluation Division that any modi�cation or enhancements applied to the product preserve the
security mechanisms and maintain the assurances required by the TCSEC for the rating previously awarded
to the evaluated product.1

1The TCSEC evaluation process described here was employed in the initial evaluation of this product and its subsequent
RAMPs. The TCSEC process is being replaced by a Common Criteria evaluation process.

2
final: 3 August 2000

Final Evaluation Report Wang XTS-300
1.2. DOCUMENT ORGANIZATION

1.2 Document Organization

This report consists of nine major sections and four appendices. Section 1 is the introduction. Sections 2
through 7 provide an overview of the system, its hardware and software architecture, and a description of
the security support (Trusted Computing Base (TCB) protection mechanisms and assurances). Section 8
provides a mapping between the requirements speci�ed in the TCSEC and the system features that ful�ll
those requirements. The last section of the main body of the report contains additional comments from the
evaluation team about the system. The appendices identify speci�c hardware and software components to
which the evaluation applies, and provide reference information.

Proprietary information has been removed from this version of the Final Evaluation Report, and is replaced
in the text by the note: \Proprietary material removed."

3
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 1. INTRODUCTION

This page intentionally left blank

4
final: 3 August 2000

Final Evaluation Report Wang XTS-300

Chapter 2

System Overview

The system described in this report is XTS-300 which includes the STOP 5.2.E operating system and com-
mercially available hardware products. STOP 5.2.E is a product of Wang Government Services, Incorporated.
The hardware consists of components manufactured by third-party vendors. The hardware includes the Intel
Pentium II/III processor and associated peripherals, including a hard disk,
oppy disk drive, SCSI adapter,
Ethernet card, streamer tape drive, mouse and keyboard. Other optional peripherals include a parallel print-
er, the PC Card Reader/Writer, CD-ROM and the Data Transfer Cartridge (DTC) devices. The XTS-300
is assembled, tested, and distributed by Wang.

The system supports both a mandatory sensitivity policy and a mandatory integrity policy. It provides
16 hierarchical sensitivity levels, 64 non-hierarchical sensitivity categories, eight hierarchical integrity levels,
and 16 non-hierarchical integrity categories. Some of the hierarchical integrity levels are used by the system
to provide role separation, and the others are available to users. The combination of mandatory sensitivity
and integrity hierarchical and non-hierarchical levels is called the Mandatory Access Control (MAC) label.
(In this report, the term maximum MAC label denotes a label with the maximum sensitivity and maximum
integrity levels, and with all possible non-hierarchical categories.) The system also supports a discretionary
access control policy.

XTS-300 consists of two major components: the Trusted Computing Base (TCB), and Commodity Ap-
plication System Services (CASS). The TCB contains the XTS-300 hardware, with the exception of that
connected to the Znyx LAN adapter for purposes of network connections, and the software portion of STOP
5.2.E that is trusted. STOP 5.2.E consists of four components, three of which are in the TCB, the fourth
of which is CASS. The TCB provides all basic operating system services and enforces the system security
policy, while CASS provides the user with an application programming environment. Although CASS is not
part of the TCB, it is discussed in this report because it, or a site-provided alternative, is necessary for the
system to support users. The software portion of the TCB consists of a Security Kernel that provides basic
operating system, I/O functions, and security services, a higher layer called TCB System Services (TSS) that
provides a �le system and other services, and Trusted Software that provides functions available to the user,
system operator, and system administrator. Wang has chosen to make the user interface of CASS similar to
that provided by UNIX, so that it will support applications developed to operate under UNIX.

The network subsystem is host-based and resides in the TCB. It is completely included in the evaluated
con�guration. Attaching the XTS-300 to a network is permitted in the evaluated con�guration. The following
summarizes the network security policy that must be in place when a network is attached to an XTS-300:

� Networks are single-level and unlabeled. All data going out a network must be at the same level as the
network device and any data coming in from the network will be labeled at that level. The TCB does
not attach labels to data going out to a network and does not support lower protocol stack labeling
standards such as CIPSO.

� The TCB will generally treat a TCP/IP connection as accessible only to the process which established
it. The exceptions to this are that a process may explicitly \register" a socket for sharing with a

5
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 2. SYSTEM OVERVIEW

single, other process and that a forked child process will have access to sockets that were open in the
parent process. The TCB does not maintain DAC attributes for sockets and sockets are not considered
\named" objects.

� Remote logins to the TCB, across the network, are not supported and there is no trusted path across
the network. No \inbound" high-level protocols (e.g., Telnet and FTP) that involve user authentication
are allowed by the TCB.

� No exchange of audit information or information from other trusted databases are allowed across the
network.

� Each network device must be con�gured with a speci�c owner and the discretionary permissions must
be con�gured to disallow access to any process with a di�erent owner.

For more detailed information on the network security policy, see Section 5 of the XTS-300 Trusted
Facility Manual [33]

When attaching an XTS-300 to a network, a site should recognize that a network system viewed as a whole
is subject to additional security risks that are not present for a stand-alone computer system. Incorporation
of an XTS-300 into a network does not eliminate these risks. Some examples of general risks are itemized
below.

� An unauthorized person could use a passive wiretap to read data on the network. This data includes
Telnet and FTP passwords coming from the XTS-300. If the network is classi�ed, classi�ed data could
be disclosed.

� Although the XTS-300 does not allow promiscuous mode to be enabled, or restricts the use of raw IP to
privileged users, use of these modes by authorized users on any non-XTS-300 network node e�ectively
bypasses these restrictions and could result in DAC violations or network spoo�ng.

� Spoo�ng (i.e., masquerading) a response to the XTS-300 (or any workstation) during an FTP or Telnet
session could mislead the user as to the actual data transferred or the actual (remote) operations
performed.

� Any network user could disrupt or deny network service or even slow down local workstation operations
(even on the XTS-300) by several methods including
ooding the network or a particular host with
packets.

� Any network user may be able to cause a system on the network to shut down by causing network logs
or system audit �les to �ll.

The XTS-300 TCB software can not itself provide complete countermeasures for the network security concerns
mentioned above. Note that the threats are not to XTS-300 security, only to security of the network viewed
as a whole. A site will have to rely on physical, personnel, and procedural methods to counter the threats
and some such countermeasures are itemized below. Most of these countermeasures are not XTS-300 speci�c
and in these cases no XTS-300 speci�c procedures for implementing them are given.

� Do not directly connect the XTS, or the internal LANs it connects to, to a Wide Area Network
(WAN). Always connect WANs to devices, such as routers, that �lter packets. Filter out incoming

6
final: 3 August 2000

Final Evaluation Report Wang XTS-300
2.1. XTS-300 BACKGROUND AND HISTORY

ICMP packets, layer 2 packets larger than about 3000 bytes, and incoming packets with a source
address that is inside the LAN. This �ltering will prevent ICMP redirect attacks and certain kinds
of denial-of-service attacks (unless they originate from a system on the LAN) and will make it more
diÆcult for attackers to use IP spoo�ng.

� Refrain from con�guring multiple network interfaces on the XTS at the same MAC level. Con�guring
network interfaces at di�erent levels may require use of custom, trusted software to allow communica-
tions between di�erent networks. However, use of IP forwarding and IP source routing can be nulli�ed,
and risk of ICMP echo attacks can be reduced, by separating networks at di�erent MAC levels.

� Network administrators should ensure that each LAN that is hooked up to the XTS-300 operates only
at the expected level.

� Establish consistent procedures and policies for all workstations on the network (e.g., disallow use of
\raw IP" and \promiscuous mode").

� Enable auditing of ICMP redirects by the XTS.

� Refrain from enabling IP forwarding on the XTS.

� Physically protect the network media and all hardware attached to it.

� A TCP/IP network has privileged ports that are normally restricted from being accessed by user
programs. On UNIX systems, this is often accomplished by restricting access to these ports to programs
running with the root user ID. On the XTS-300, these privileged ports are restricted by designating
a special network user ID. Therefore, the Systems Administrator should ensure that the network user
ID is only used for this purpose. It should not be possible to interactively log in as the network user.
Finally, the System Administrator should ensure that only appropriate programs are allowed to run
with the userid of this user.

For more detailed information on both potential threats and countermeasures, see Section 2 of the XTS-300
Trusted Facility Manual [33]

2.1 XTS-300 Background and History

XTS-200, XTS-300, STOP 3.1.E, STOP 3.2.E, STOP 4.1, and STOP 5.2.E are descendants of the Secure
Communications Processor (SCOMP) [13] a system also developed by Wang, which was evaluated by the
National Computer Security Center (NCSC) in 1984 and received an A1 rating. The hardware base is funda-
mentally di�erent than the SCOMP's, and the software has also undergone signi�cant further development.
Development of STOP 3.1 on the DPS6 PLUS began in 1987 and continued through 1989. During that time,
the combination of the software and hardware became known as XTS-300.

In contrast to the hardware on which the SCOMP was based (the DPS6), the DPS6 PLUS and DPS 6000
incorporate virtual memory and ring-protection techniques from the Multics [12] system, so no additional
hardware modi�cation was required. The salient di�erences between the operating system employed by
SCOMP and XTS-200 are that STOP 3.1 incorporated complete �le system support within the TCB, and
that it was considerably restructured to improve its use of layering and other software engineering principles.
In addition, XTS-200 supported multiprocessor con�gurations. Development on STOP 3.2.E began in June
1992 and was completed in June 1993.

7
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 2. SYSTEM OVERVIEW

The essential di�erences between XTS-300 and XTS-200 result from the change in hardware base, primarily
to employ the functions provided by the Intel processor. Memory management, ring protection logic, and
process management have been updated in XTS-300. In addition, I/O functions have been moved from
TSS into the kernel. However, the user interface to XTS-300 has changed little from that of XTS-200.
Development on STOP 4.1 began in November 1992 and was completed in October 1994. Development
continued through STOP 5.2.E which was completed in April 2000.

The overview begins with an examination of the hardware, followed by a description of the software.

8
final: 3 August 2000

Final Evaluation Report Wang XTS-300

Chapter 3

Hardware Overview

3.1 Introduction

The XTS-300 is a 32-bit, demand-paging, time-sharing, single or multi-processor system. Separation of data
is accomplished by a combination of hardware and software. The Intel Pentium II and Pentium III, upon
which the XTS-300 is based, incorporate their own ring protection mechanism supporting four rings, descrip-
tor privilege levels, gate descriptors, segment attributes (read, write, execute), and call/return instructions.
The privilege level (PL) protection mechanism ranges from PL0 (the most privileged) to PL3 (the least priv-
ileged). The CPUs support instructions to address bits, bytes, words, and double words (32-bits). They also
support up to 256 interrupt vectors, although the XTS-300 does not use all of these. Instruction addressing
modes include displacement, base, base plus displacement, scaled index plus displacement, base plus index
plus displacement, and base plus scale index plus displacement.

The XTS-300 does not allow loading of �rmware by users or processes. The Kernel does however load
�rmware into the Adaptec AIC7870/96 SCSI controller during system startup. Other hardware components
support �rmware downloading, but the TCB prevents processes from doing that.1

The XTS-300 has a Intel Pentium II/III, PCI bus hardware base. It uses the following Commercial O�-The-
Shelf (COTS) peripherals:

� Hard Disk

� Intel Pentium II/III CPU, PCI Bus Motherboard w/on-board: video, SCSI and Parallel/Serial I/O

� up to 512 Mbytes RAM

� 3.500 1.44 Mbyte Floppy Disk (capable of reading standard density diskettes)

� SCSI Host Adapter (One to two on-board and optional add-ons)

� 4 mm DAT Tape Drive

� PC Card Reader

� Data Transfer Cartridge Reader

� CD-ROM Drive

� SVGA Monitor

� 101-key, 104-key standard or laptop style Keyboard

1The 4mm tape drive has its �rmware modi�ed to prevent downloads.

9
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 3. HARDWARE OVERVIEW

Pentium II/III

2MB L2 Cache

FPU

2 x 16KB
L1 Cache

Parallel Controller

USB Controller

Infra-Red Controller

Onboard Ethernet NIC

IDE Controller

U
nu

se
d

Floppy Controller Floppy Drive

Printer

Serial Controller Mouse/
Printers

Terminals/

Ethernet Controller(s) Network

FPU

PS/2 Mouse/Keyboard
Controller

Video
Memory

Video
Controller

SCSI Host Adapter
1 or 2 Devices

128-512 MB
Memory

CD-ROM Drive

DAT Drive

PC Card Reader

DTCR

Hard Disk

C
onsole

Pentium II/III

PCI Motherboard

512 KB / 2 MB
Level 2 Cache

2 x 16 KB
Level 1 Cache

Figure 3.1. Intel 440 Motherboard Hardware Layout

10
final: 3 August 2000

Final Evaluation Report Wang XTS-300
3.2. CENTRAL PROCESSING UNIT

� Mouse or Touchpad

� 4-Port Interface Controller Card (optional)

� 2/4 port Ethernet Card (optional)

� PCL5 Parallel Printer

A more detailed list of the COTS products used can be found in Appendix A of this document. Figure 3.1
shows the hardware layout of the XTS-300. Each major component is discussed in this chapter.

3.2 Central Processing Unit

The XTS-300 utilizes one or two Pentium II or Pentium III processors as its CPU. Both kinds of CPUs
support 32-bit addressing. They incorporate the following capabilities: cache, memory management,
oating
point coprocessing, and write bu�ers. The internal cache has 16 Kbytes for instructions and another 16
Kbytes for data. Both CPUs use a paging and segmentation mechanism that can be independently enabled
and disabled. They also provide a ring protection structure (described in Section 3.4.3, page 22).

The microcode in the Pentium II/III is downloadable. To perform a download, software must issue a write to
a speci�c \model-speci�c register." Writing to model-speci�c registers is a privileged operation, so untrusted
software can not do it. The TCB does not use this download capability, but the BIOS does. Each CPU must
be independently loaded and must be loaded during every system reset. The CPU hardware will reject the
download if its version (which is encoded within the download) is not acceptable or if the encoding is wrong.
Intel strongly protects the syntax and semantics of the microcode and uses strong encoding techniques (which
are also highly proprietary) to prevent malicious users from corrupting or substituting the microcode image
within the BIOS.

3.2.1 Registers

Both CPUs include the following sets of registers (quantity in parentheses):

� General (8)

� Control (5)

� Instruction Pointer (1)

� EFLAGS (1)

� Segment (6)

� Memory Management (4)

� Floating Point (8)

The Intel Pentium II/III CPU also supports \model-speci�c" registers. Note that the microarchitecture also
has many \hidden" registers that are not visible to the XTS-300.

11
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 3. HARDWARE OVERVIEW

3.2.1.1 General Registers

These 32-bit, general registers hold the data necessary for logical and arithmetic operations, as well as for
address calculations. Each 32-bit register can be broken down into two 16-bit registers, where only the low
16 bits are used. Each 16-bit low register can be broken down even further into a high byte and a low byte.
General registers are accessible by applications.

3.2.1.2 Control Registers

There are several 32-bit Control Registers: CR0 - CR4. CR0 contains system
ags that control the state of
the entire system rather than of any individual task. CR1 is reserved. CR2 and CR3 are used by the paging
mechanism as follows: CR2 contains information to handle page faults, and CR3 contains the base register
of the Page Directory (PDIR). CR4 contains additional system
ags. Control registers are generally not
accessible outside of Privilege Level 0 (PL0).2

CR0 contains system control
ags that are general to the processor. The following
ags are contained in
CR0:

Paging Bit (PG) Enables or disables paging mode.

Cache Disable (CD) Enables and disables internal L1 caching.

Not Write-through (NW) Enables and disables cache write-throughs.

Alignment Mask (AM) Enables and disables alignment checking.

Write Protect (WP) Write-protects user-level pages against supervisor-level writes when set.

Numeric Error (NE) Enables and disables the mechanism for reporting
oating point numeric errors.

Task Switched (TS) Set for every task switch. Used when executing
oating-point arithmetic.

Emulation (EM) Enables and disables the math coprocessor.

Math Present (MP) Used to help synchronize processor with the coprocessor.

Protection Enable (PE) Enables and disables segment level protection.

The CR3 register contains two
ags: Page-level Cache Disable (PCD) and Page-level Writes Transparent
(PWT). The PCD controls caching of the referenced page (which will be a paging directory). This bit is set
to disable caching by the kernel startup and during process creation. The PWT controls write-through of
the referenced page on an external cache, but is irrelevant since caching of the referenced page is disabled.
The CR3 register also contains the 20 most signi�cant bits of the base address of the page directory (See
Section 3.3.3.1, page 16 for a discussion of page directories).

The CR4 register contains
ags to control the following features: machine check, 4 Mbyte page frames, debug
extensions, virtual 8086 extensions, new time stamp instructions, 36 bit addressing and other miscellaneous
features. None of these features is used by the TCB and none of them are accessible outside PL0.

2An exception is that part of CR0 can be read outside of PL0.

12
final: 3 August 2000

Final Evaluation Report Wang XTS-300
3.2. CENTRAL PROCESSING UNIT

3.2.1.3 Instruction Pointer Registers

The instruction pointer register (EIP) contains the 32-bit pointer to the o�set of the address in the current
code segment of the next instruction to execute.

3.2.1.4 EFLAGS Register

The EFLAGS register handles virtual-8086 mode, I/O privilege, task switching status, debugging, and
maskable interrupts. Only the security relevant bits, such as the I/O Privilege Level (IOPL) and the
Interrupt-enable Flag (IF), are described in detail. The following is a list of bits in the EFLAGS register:

Carry Flag (CF)

Parity Flag (PF)

Auxiliary Carry Flag (AF)

Zero Flag (ZF)

Sign Flag (SF)

Trap Flag (TF)

Interrupt Enable Flag (IF)

Direction Flag (DF)

Over
ow Flag (OF)

Input/Output Privilege Level (IOPL)

Nested Task (NT)

Resume Flag (RF)

Virtual 8086 Mode (VM)

Alignment Check (AC)

CPU ID - used in conjunction with the CPUID instruction

Virtual 8086 interrupt pending

Virtual 8086 interrupt
ag

The IOPL bits determine if a process has access to an I/O address space. If the IOPL is greater than the
current privilege level, access is granted. Otherwise, unless the Task State Segment (TSKSS3) bitmap allows
access, an exception is incurred.4 In the XTS-300, the IOPL �eld is set to 0.

3Intel refers to this as the TSS; however, because TSS also represents the TCB System Services on the XTS-300, a di�erent
acronym was needed.

4See Section 3.4.1, page 21 for a complete description of the TSKSS.

13
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 3. HARDWARE OVERVIEW

The IF bit, if set, will enable the processor to respond to maskable interrupts. Maskable interrupts are
interrupts in an executing program caused by such things as printing. A maskable interrupt, as opposed to
a non-maskable interrupt (NMI), will complete the current task before servicing the interrupt.

The IF, IOPL, RF, VM, and AC
ags cannot be modi�ed by processes running at a privilege level not equal
to 0. These
ags are considered privileged on the CPU. The virtual 8086 interrupt
ags supported by the
Intel Pentium II/III are also privileged, but are ignored because virtual 8086 mode extensions are disabled
by bit settings in CR4.

3.2.1.5 Segment Registers

A segment is an independent, protected address space. Each segment register is designated to store informa-
tion about a certain type of segment. The CS register, for example, refers to a code segment that contains
instructions. There are six 16-bit segment registers on the CPU; Code Segment (CS), Data Segment (D-
S), Stack Segment (SS), Extended Data Segment (ES), Far Data Segment (FS), and Global Data Segment
(GS). When an instruction is executed, it loads a pointer to a descriptor table into the segment register.
This pointer is called the segment selector. In addition to holding a pointer to a descriptor table, the selector
also contains information about the type of descriptor table being accessed and privileged information. The
CPU allows a task to have access to as many as six segments at one time. Section 3.3.3.1 describes segments
in greater detail.

The SS register refers to information regarding the current stack segment. The segment being pointed to by
the SS register must have a privilege level which is equal to or greater than that of the process in order to
read or write. The SS register can be read and written by processes running at all privilege levels.

The DS, ES, FS, and GS registers refer to segments containing data. There are four data segments, to
improve performance. The segment being accessed is always checked to ensure that the proper registers
reference the appropriate corresponding segment (i.e., data segments are only referenced by data segment
registers and code segments are referenced only by code segment registers). See Section 3.4.3.1, page 23 for
more discussion on how and when these checks are performed.

3.2.1.6 Memory Management Registers

The CPU contains four memory management registers; the Global Descriptor Table Register (GDTR), the
Local Descriptor Table Register (LDTR), the Interrupt Descriptor Table Register (IDTR) and the Task
Register (TR). These registers are initially set by the System Loader and are modi�ed only by Ring 0
operations thereafter.

The GDTR contains the 32-bit base address and the 16-bit segment limit of the Global Descriptor Table
(GDT). The GDT contains a list of segment descriptors that are used globally. In other words, the GDT
contains information which must be accessible to the system at all times. The LDTR contains the 32-bit
base address and the 16-bit segment limit of the Local Descriptor Table (LDT). The LDT contains a list of
segment descriptors that are local to the current process. The IDTR contains the 32-bit base address and
16-bit segment limit of the Interrupt Descriptor Table (IDT). The IDT contains a list of gate descriptors
associated with the handling of interrupts. The TR register contains the segment selector for the current
task. This selector points to the TSKSS contained in the GDT for the current process.

14
final: 3 August 2000

Final Evaluation Report Wang XTS-300
3.3. MEMORY ON THE XTS-300

3.2.1.7 Floating Point Registers

There are eight 80-bit
oating point registers in the FPU on the CPU. These registers handle the
oating
point calculations. The values within these registers are explicitly saved and restored by the operating system
for each process. However, they are not saved when a task switch occurs.

To keep track of the general state of the Floating Point Unit (FPU), a 16-bit status word is used. This
FPU status word contains
ags which can be passed back to the CPU through the AX register. This status
word includes a stack fault
ag and six exception
ags, including over
ow and under
ow
ags. If a numeric
exception occurs, the FPU will either handle the exception internally (i.e., it will produce the most reasonable
result based on the information and allow the execution of the process to continue un-interrupted) or by
sending either an interrupt 16 (Floating Point Exception) or an external interrupt to invoke a software
exception handler. The XTS-300 is con�gured to handle these exceptions by setting the NE bit in the CR0
register.

3.2.1.8 Intel Pentium II/III Model-Speci�c Registers

The model-speci�c registers are not used by the TCB and are treated as privileged by the hardware, i.e.,
they are not accessible outside PL0. The model-speci�c registers include: machine check address, machine
check type, time stamp counter, event control, and event counters. Note that the XTS-300 sets a bit5 to
disable outer ring access to the time stamp counter.

3.3 Memory on the XTS-300

The CPU supports several types of memory. The following types of memory are supported by the XTS-300:6

� Main Physical Memory (up to 64 Gigabytes)

� Cache Memory

3.3.1 Main Physical Memory

The main physical addressing range for the CPU is 64 Gbytes. The XTS-300 can use up to 862 Mbytes.
Figure 3.2 shows the physical address space on the XTS-300.

Proprietary �gure removed

Figure 3.2. XTS-300 Use of Physical Address Space

Once the bootstrap loader has been executed, physical memory locations are rarely referenced by software
using a physical address.7 Instead, a virtual address is referenced. The virtual address is then mapped, via
a linear address, to the main physical address.

5Speci�cally the TSD bit in the processor's CR4 register
6The XTS-300 supports other types of memory including video memory, CMOS/NVRAM, BIOS ROM and device memory

mapped I/O addresses. However, they are not covered in this section.
7The Kernel declared data segment is setup so that the linear address is identical to the physical address.

15
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 3. HARDWARE OVERVIEW

3.3.2 Cache Memory

The Intel Pentium II/III contains separate 16 Kbyte write-back data and 16 Kbyte write-back instruction
L1 caches. The Intel Pentium II/III caches use a \write-back" policy in which main memory will only be
updated when necessary (either when lines need to be reused in the cache or an external bus master needs to
access the same physical memory locations). The internal L2 cache (up to 2 Mbytes) is enabled (via BIOS).

Caching is used on the XTS-300 to increase performance. The caches are not directly addressable by a
process.

The XTS-300 disables the caching of PDIR entries because these entries are cached in the Translation
Lookaside Bu�er (TLB). Caching never takes place at both the PDIR and Page Table levels. The CD and
NW bits in CR0 are both set to zero, enabling the internal L1 cache write-backs. The TCB never uses the
PWT bit. The cache is never disabled after the TCB begins execution.

Upon startup, the caches are cleared. When a pagetable changes (due to segment growth), the paging cache
will be
ushed to be sure that the new pagetable entries and PDIR entries come into e�ect. Flushing the
paging cache consists of saving and reloading the CR3 (i.e., PDIR pointer) registers. Segment-level cache is

ushed by loading a NULL selector into the volatile segment registers (see Section 3.3.3.1 and Section 3.3.3.2
for more information on segments and pages).

3.3.3 Virtual Memory

The XTS-300 uses a virtual memory management scheme to address physical memory locations. The XTS-
300 processor's virtual memory management scheme supports a 64 Tbyte non-process virtual memory address
range. Each process is allowed up to 4 Gbytes of virtual memory space.

3.3.3.1 Segments

A segment is a unit of address space ranging from 4 Kbytes up to 4 Gbytes, though the operating system
limits segments created by a process to 4 Mbytes, and is de�ned by the operating system. Segments are
de�ned by a segment descriptor. The segment descriptor contains information about the size, base address,
and protection level of the segment (as seen in Figure 3.3).

A segment register holds a selector that points to the o�set within the descriptor table where a particular
segment descriptor resides (see Figure 3.3). The purpose of the segment register is to provide the initial
information required to locate a page in memory; the logical address. The type of segment register that is
used (e.g., code segment, data segment, or stack segment) is dependent on what type of segment is being
accessed. For example, if instructions are being accessed, the CS register will be used. The segment register
consists of two parts; a visible part (loaded using the MOV instruction) that contains a segment selector, and
an invisible part (loaded by the processor and invisible to even the kernel software) that contains information
about the limit, the base address, etc. The invisible parts of the segment registers constitute a segment cache.
The segment selector contains an index to a speci�c segment descriptor in the descriptor table, a bit (TI)
to identify which descriptor table is being accessed (GDT or LDT), and a requester privilege level (RPL)
�eld that identi�es the privilege level of the procedure that created the selector. On the XTS-300, segment
descriptors are loaded into the GDT only during startup (though task descriptors are updated in the GDT
each time a process is created). The GDT is also loaded with pointers to the LDT and gate descriptors.

16
final: 3 August 2000

Final Evaluation Report Wang XTS-300
3.3. MEMORY ON THE XTS-300

TIINDEX RPL

LDT GDT

Segment
Selector

segment descriptor

Base G D O
A
V
L

Limit P
D
P
L

S Type Base

Base Address Segment Limit

0
3
1

2
4

2
3

2
2

2
1

2
0

1
9

1
6

1
5

1
4

1
3

1
2

1
1 8 7

Selector Base Address, Limit,
Etc.

Segment
Register

LDT
or
GDT

15 031 0

Figure 3.3. Selector-to-segment translation

17
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 3. HARDWARE OVERVIEW

However, the majority of segments are process local and only use the LDT. Figure 3.3 displays a graphical
representation of the segment selector, the segment descriptor and the relationship between the two.

A segment descriptor provides information about the size (segment limit), base address, descriptor privilege
level (DPL), and other control and status information. There are two classi�cations of segment descriptors,
code/data descriptors and system (task and gate) descriptors. The classi�cation of the descriptor is deter-
mined by the S bit (bit 12) in the descriptor itself. The maximum size of a segment can vary from 1 Mbyte
to 4 Gbytes. The granularity bit (G) (bit 23) toggles the limit �eld of the descriptor to be interpreted as
either bytes or pages. Segment descriptors are created by Ring 0 software and cannot by modi�ed directly
by an application. On the other hand, segment registers can be modi�ed by applications.

3.3.3.2 Pages

A page is a 4 Kbyte portion of memory. A major distinction between segments and pages is that pages have
a �xed size while segment size can vary. Unlike segmentation, paging is transparent to applications (except
that Ring 2 can see paging violations due to an attempted write to a read-only page). On the XTS-300,
segmentation and paging are combined such that segments are paged. A segment is capable of being 1024
pages. By using paged segments, an application does not have to reside entirely in main memory. Only the
portion of the application which is actually being used (that is, the page being used) needs to be present in
physical memory.

Figure 3.4 shows how a logical address, or virtual address, is translated into a physical address. Pagetables
are intermediaries between the linear address and the physical address. The linear address, obtained from
the segment, contains three pieces of information about a page; the PDIR entry location, the pagetable entry
location, and the location in the page frame.

The Page Directory (PDIR) is a table of pointers that point to speci�c pagetables associated with a particular
process. On the XTS-300, each process has its own PDIR. CR3 contains the information about which PDIR
should be accessed. The PDIR can contain up to 1024 pointer entries, each pointing to a particular pagetable
associated with its process. With the exception of Binary Compatibility Standard (BCS) (see Section 4.2,
page 41), kernel text and declared data segments and the Global Pool segments, most segments use only one,
unique PDIR entry number. This number is the same as the segment number. Each location in a pagetable
is a pagetable entry. The pagetable entry is located by using the information in the linear address. The
pagetable entry points to a particular page frame. Information in the linear address speci�es where in the
page frame to look.

3.3.3.3 Address Translation

Figure 3.4 depicts the sequence of events that occur during address translation. At a high level, the processor
begins with a virtual address. With that virtual address, a linear address is determined. The information
contained in the linear address, combined with the proper PDIR and pagetable entries, de�ne where in a
page frame the physical address is located.

The address translation begins with a selector and o�set. The selector is obtained either from a 48-bit
pointer or from a segment register. The selector indexes into the LDT or GDT to a segment descriptor. The
descriptor de�nes the linear base address of the segment. The base address �eld in the segment descriptor,
along with the original o�set, form the linear address.

18
final: 3 August 2000

Final Evaluation Report Wang XTS-300
3.3. MEMORY ON THE XTS-300

Linear Address Which PDIR
entry

Which Page Table
entry

Where in the
page

DIRECTORY TABLE OFFSET

AAA
AAA

CR3

PDIR
Page
Table AAAAA

AAAAwhich page

which page
table

which
PDIR

AAA
AAAPage

Frames

Selector Offset

AAAA
AAAAsegment

descriptor +

Virtual Address

Physical Address

Descriptor
Table

015 031

31 0

Figure 3.4. Logical-to-physical (or page) translation

19
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 3. HARDWARE OVERVIEW

The linear address contains three pieces of information; the o�set within the PDIR, the o�set within the
pagetable, and the o�set within the page frame. CR3 points to the speci�c PDIR associated with the current
process. Once a PDIR entry has been located, its contents are used to determine the location of the pagetable
entry. The PDIR entry points to the speci�c pagetable. The pagetable entry points to a particular page
frame. This information, along with the o�set �eld in the linear address, is used to determine where in
the page frame the physical address is located. A description of how the ring protection mechanism is used
during page translation is contained in Section 3.4.3, page 22.

3.3.3.4 Gates

In order to protect control transfers between code segments of di�erent privilege levels, gate descriptors are
used. There are four types of gate descriptors; call gates, trap gates, interrupt gates and task gates.

Interrupt and trap gates are used to reference procedures and tasks. When an interrupt occurs, the IDTR
register and interrupt number are used to locate the interrupt or trap gate in the Interrupt Descriptor Table
(IDT). This gate contains a pointer to either the GDT or the LDT o�set containing a segment descriptor.
The segment descriptor and the gate combined yield the interrupt procedure entry point. The gate descriptor
contains the o�set within the segment of the interrupt procedure entry point.

A call gate handles the control transfer from one segment to another within the same task. This is done by
issuing either a JMP or a CALL instruction. Call gates may reside in either the GDT or the LDT, but never
in the IDT. Call gates contain the segment selector that points to a gate descriptor that, in turn, points to
an o�set to the procedure entry point. Because the segment selector points to the gate descriptor in a call
gate, there is no use of the o�set �eld in the segment selector. Instead, the o�set of the gate descriptor is
used along with the base address �eld in the code segment descriptor to create a procedure entry point.

The task gate is utilized when a task switch is implemented. The task register (TR) contains the index of
a task descriptor in either the LDT or the GDT, but the XTS-300 keeps all task descriptors in the GDT.
This descriptor de�nes a particular TSKSS, which is explained in further detail in Section 3.4.1.

A gate descriptor allows for a transfer of control from one segment privilege level to another. Gate descriptors
contain information about the destination segment. A description of how protection is enforced during control
transfers and task switching is discussed in Section 3.4.3.

3.3.3.5 Returning from Gates and Interrupts

Once a control transfer has been completed or an interrupt has been serviced, a transfer back to the original
process is required. This is performed using the IRET and RET instructions.

The RET instruction is used to return from a CALL instruction. When used, a check is made of the
descriptor addressed by the return. The code segment to return to must be of equal or lesser privilege than
the current code segment. A return is granted if the RPL of the code segment is numerically greater than
the CPL of the segment being returned from and if the DPL of the code descriptor is greater than the CPL.
If the CPL is less than the return code segment DPL, the segment registers are loaded with a NULL selector
(see Section 3.4.3 for a complete de�nition of RPL, CPL, and DPL).

The IRET instruction is used to return from an interrupt. The privilege checks made on an IRET instruction
are dependent on the value of the NT
ag in the EFLAGS register. If NT is equal to 0, the IRET instruction

20
final: 3 August 2000

Final Evaluation Report Wang XTS-300
3.4. PROCESS MANAGEMENT

returns from the interrupt without performing a task switch. A check is performed to ensure that the code
returned to is equally or less privileged than the interrupt routine. If the NT
ag is equal to 1, the IRET
instruction will reverse the operations previously performed by the CALL/INT instruction.

3.4 Process Management

A task is a program which is currently being executed. The CPU uses privilege level checking to distinguish
between the di�erent privilege levels within each process. The privilege level checking ensures that no
access is given to more privileged segments and instructions from less privileged code within the process.
The following three sections describe in greater detail: processes, interrupts and exceptions, and hardware
protection devices.

3.4.1 Processes

A process is instantiated through either an interrupt, an exception, a JMP, or a CALL. A context switch is
the act of one process being saved in order for another process to execute. Context switching occurs in any
of the following four cases:

� The current task executes a JMP or CALL to a TSKSS descriptor

� The current task executes a JMP or CALL to a task gate

� An interrupt or exception indexes to a task gate in the IDT

� The current task executes an IRET when the NT
ag is set

When a process is saved in memory, it is saved to a TSKSS. The TSKSS contains information about the
general registers, the segment registers, the EFLAGS register, the instruction pointer, the selector for the
TSKSS of the previous task, the selector for the LDT, the PDIR pointer (CR3 value) and the I/O bit map.8

The Intel Pentium II/III CPU also allows an \interrupt redirection map" to reside in an extended area of
the TSKSS, but this is only valid in virtual-8086 mode and is never used by the TCB.9 A descriptor for the
TSKSS is stored in the GDT.

The current task is identi�ed by the TR. The TR points to the TSKSS of the current task. When a task is
switched, the old TR is stored and the new TSKSS is loaded. If that task is later suspended, the instruction
pointer for that task is saved so that the task can later be resumed at the same point at which it was
suspended.

When a task is switched, the TS bit in the CR0 register is also set. This bit provides coordination between
di�erent tasks and the Floating Point Unit (FPU). The TS bit signi�es that, depending on whether it is set
or not, the context of the FPU may not be that of the current task. The TS bit is always set to 1 by the
CPU when a context switch occurs. It is only reset to zero by software if an FPU instruction is executed by
the currently executing process. This bit is readable by an untrusted process.

8The TSKSS is always a �xed size and includes enough storage for the I/O bitmap to include the video controller ports.
9On the XTS-300, the I/O bit map is set to disable access to all I/O ports when a process is created. However a process

can be granted exclusive access to the video controller ports, in which case certain bits in the I/O bitmap of that process will
be toggled on and o� as needed, by the TCB.

21
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 3. HARDWARE OVERVIEW

3.4.2 Interrupts and Exceptions

The CPU supports both interrupts and exceptions. Interrupts occur when there is a forced program control
transfer due to hardware. An exception is caused when either an instruction cannot be performed or when
the INT instruction is executed. There are three types of exceptions: faults, traps and aborts. In the case of
a fault, the saved contents of the CS and EIP registers point to the instruction before the instruction that
generated the fault. In the case of a trap, however, the exception is generated after the faulting instruction is
performed. Aborts are used for major errors such as hardware errors or inconsistent values in system tables.
The CPU handles all software level INT calls as exceptions, though interrupt gates may be used to process
the calls. The XTS-300 sets the privilege level in the interrupt and trap descriptors in the IDT such that
only interrupt 3 (breakpoint) and 4 (over
ow) can be called from outside PL0.

The CPU contains 256 interrupt address spaces. The �rst 32 locations are reserved for exceptions and NMIs.
The XTS-300 uses 16 additional interrupt locations for its own interrupts.10 Each interrupt code has an
associated gate with a corresponding gate descriptor. These gate descriptors are stored in the IDT. All
interrupts, excluding NMIs, have the same priority level on the XTS-300.

Interrupts on the Intel Pentium II/III base, are controlled by the advanced programmable interrupt controller
(APIC). An APIC is integrated into the Intel Pentium II/III CPU. The di�erent APICs cooperate and are
designed to support multiprocessing. The older legacy I/O APIC functionality, present for compatiblity, is
not used by the XTS-300.

If a less privileged process produces an interrupt with a higher numbered privilege, a check is made on
the CPL associated with the process and the DPL of the interrupt code segment. If the CPL is less than
the DPL (i.e., the process has a lesser privilege than that of the interrupt routine), a stack switch occurs.
Because servicing the interrupt, while in untrusted code, requires a change in privilege levels, a switch will
be made to the Kernel stack. The reason for this is to prevent less privileged programs from manipulating
more privileged programs. The contents of the registers are saved in the new stack and the registers are
loaded with the new, more privileged, stack information. When the interrupt has been serviced, the original
contents of the registers are restored and the process continues. This prevents a lesser privileged process
from writing to a more privileged process.

The XTS-300 is con�gured such that all SCSI devices use the same interrupt request lines (IRQs). Ethernet
lines can share the same IRQ. Each communications port (i.e., COM1 and COM2) has its own IRQ and all
SIO4 ports (see Section 3.7.1, page 30) have the same IRQ.

3.4.3 Protection

The Intel Pentium II/III has the ability to operate in four di�erent modes; protected mode, real-address
mode, and virtual 8086 mode, and system management mode. The XTS-300 runs in real-address mode at
start-up and then switches to protected mode. Virtual 8086 and system management modes are not utilized
by the XTS-300.

Protected mode utilizes most of the instructions and architectural features of the CPU, including all of
the protection features. It uses the 32-bit instruction set. Real-address mode simulates an enhanced 8086
processor.

10This does not take into consideration the APIC speci�c interrupts.

22
final: 3 August 2000

Final Evaluation Report Wang XTS-300
3.4. PROCESS MANAGEMENT

A ring architecture, provided by the CPU, is used to restrict access to segments, pages, and instructions. The
CPU ring architecture consists of four levels (PL0-PL3), with PL0 being the most privileged level. As seen
in Figure 3.5, a non-TCB process utilizes a di�erent ring architecture than a TCB process. Both, however,
share the same Ring 0 and Ring 1 assignments. These four ring levels are used at several di�erent levels
of address translation. Bits are used to supply privilege information about the selector (RPL), descriptor
(DPL), and process levels (CPL).

Untrusted Process

Untrusted
Applications

CASS

TCB System
Services

Kernel

Ring 0

Ring 1
Ring 2

Ring 3

Trusted Process

Ring 0

Ring 1
Ring 2

TCB System
Services

Kernel

Trusted
System/Application

Software

Figure 3.5. Privilege Level

The CPU provides �ve ways by which it checks for protection violations contained in memory references; type
check, limit check, restriction of addressable domain, restriction of procedure entry points, and restriction of
instruction sets. If one of these checks does not pass, an exception is generated.

3.4.3.1 Type Checking

Type checking is a test of the Type �eld in the segment descriptor to ensure that code segments are treated
as code segments and data segments are treated as data segments. Type checking is performed on segments.
Because segments can contain either application code and data segments or system segments and gates,
protection is necessary at the segment level to ensure that all segments are properly de�ned and that no
segment is accessed by a less privileged process. There are two cases when the CPU will perform a type check
on a segment. The �rst check is made when a descriptor selector is loaded into a segment register. This is
to ensure that the CS register, for example, contains only code segment selectors. The second case is when
a segment is used by an instruction. This is because of three architectural rules that state the following:

� Executable segments cannot be written to by an instruction

� A data segment must have its writable bit set in order for an instruction to be able to write to it

� An executable segment must have its read bit set for an instruction to read it

23
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 3. HARDWARE OVERVIEW

3.4.3.2 Limit Checking

Limit checking ensures that programs do not try to access addresses that are located outside of the targeted
segment. Limit checking also occurs at the segment level. The limit �eld in the segment descriptor de�nes
its size. The limit �eld is dependent on the G bit that is also in the segment descriptor. The granularity
bit toggles the maximum limit between 1 Mbytes and 4 Gbytes. The limit �eld is also dependent on the
expand-down bit; however, this is not utilized on the XTS-300. A general protection exception is generated
if access to a memory byte, word, or doubleword at an address greater than the limit is attempted.

3.4.3.3 Restriction of Addressable Domain

Restriction of addressable domain refers to protection checking at the paging level. When a reference is made
to a page in memory, the processor checks the CPL against the User/Supervisor (U/S) bit of the pagetable
entry. If the U/S bit is set to 0, then that page is set to supervisor level. If the U/S bit is set to 1, then the
page is set to user level. If the CPL is 0,1, or 2, then the processor will be running at the supervisor level
and all pages will be accessible. If the CPL is 3, the processor will be running at the user level and only the
pages marked U/S bit = 1 will be accessible. The XTS-300 sets the U/S bit to 1 which means that all pages
are readable and writable by any level.

In addition to the U/S bit, there is a Read/Write access (R/W) bit at the page level. If the processor is
running at supervisor level and the Write Protect (WP) bit in the CR0 register is set to 0, then all pages
are both readable and writable. However, if the processor is running at user level, then only the pages with
R/W = 1 will be readable and writable. The XTS-300 always sets WP to zero and only sets R/W to 0
for pages in Ring 3, read-only shared memory segments. Emphasis is, in turn, placed on protection at the
segment level.

3.4.3.4 Restriction of Procedure Entry Points

Restriction of procedure entry points relies on the call gate mechanism. When a CALL or JMP instruction
is executed, a call gate is employed to handle the transfer from one code segment to another. The call gate
speci�es where in the procedure to enter (i.e., what segment) and what privilege levels are allowed access to
that segment. When a control transfer is made using a call gate, four di�erent privilege levels are checked
against each other; the DPL of the call gate, the DPL of the code segment descriptor, the CPL of the current
code segment selector, and the RPL of the call gate selector.

The following describes the sequence of events for privilege level checking when a call gate is executed:

The CPL, located in the code segment register, is compared with the RPL of the gate selector (located in
the call instruction). The maximum numerical value of the two is taken to be the active privilege level. This
calculated privilege level is then compared to the DPL of the gate descriptor. The maximum of the RPL and
CPL must be numerically less than or equal to the DPL in order to continue; otherwise, a general protection
trap is produced. If this check passes, a comparison is made of the DPL of the destination code segment
and the active privilege level. If the active privilege is not numerically greater than or equal to this second
DPL, a general protection trap occurs and the call will not be allowed to proceed.

If a gate is not used, the sequence of events di�ers in one area. The last check between the CPL and the
DPL of the destination code segment requires that the DPL be numerically less than or equal to the CPL.

24
final: 3 August 2000

Final Evaluation Report Wang XTS-300
3.4. PROCESS MANAGEMENT

3.4.3.5 Privilege Level Checking

The CPU uses the three privilege indices, mentioned at the beginning of this section, to make decisions on
the accessibility of data and code. The CPL, RPL, and DPL provide a mechanism for isolating privilege
levels and preventing any mixing of levels. A privilege level check is made at various points during address
translation to ensure that no mixture of privileged data takes place. This section covers privilege level checks
made when address translation is made for data access only.

The �rst check to be made during address translation is when the selector is loaded into the segment register.
The selector contains the RPL of the process. The descriptor that the selector points to has a DPL associated
with it. The RPL and the DPL are compared to ensure that the RPL is numerically greater than or equal
to that of the DPL. If this is not true, a general protection exception will be issued. All privilege checks are
made at the segment level, except as discussed in the section above: Restriction of Addressable Domain.

3.4.3.6 Ring 0 Privileged Instructions

The following instructions are privileged on the Intel Pentium II/III and can only be executed at PL0:

� CLTS -Clear Task-Switched Flag

� HLT -Halt Processor

� INVLPG -Invalidate TLB Entry

� LGDT -Load GDT Register

� LIDT -Load IDT Register

� LLDT -Load LDT Register

� LMSW -Load Machine Status Word (modi�es the lower 16 bits of CR0)

� LTR -Load Task Register

� MOV to/from CRn -Move to Control Register 0, 2, or 3

� RDMSR -Read from model-speci�c register

� WRMSR -Write to model-speci�c register

� RSM -Return from system management mode

� INVD -Invalidate cache

� WBINVD -Write-back and invalidate cache

The RDTSC instruction is optionally privileged, depending on the setting of a bit in CR4. XTS-300
con�gures CR4 so that RDTSC is privileged.

25
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 3. HARDWARE OVERVIEW

3.5 Input/Output

Input and output (I/O) on the XTS-300 is accomplished through I/O ports that are actually registers
connected to peripheral devices. The I/O ports are separate from both the Basic Input/Output System
(BIOS), which acts as a liaison between the system software and the hardware during system bootstrap, and
the main physical memory. The I/O ports are also separate from the \con�guration space" implemented by
the PCI chipset on the Intel Pentium II/III motherboard.

The CPU provides a separate protection mechanism for I/O called the IOPL. The IOPL, located in the
EFLAGS register, determines the lowest privilege level at which access to the I/O ports is possible. Due to
the fact that each process has its own copy of the EFLAGS register, there can exist a di�erent IOPL for
every process. The XTS-300 sets the IOPL �eld to be zero, leaving only PL0 access. A process can change
the IOPL using the POPF instruction; however, this change can only be made while in Ring 0.

Untrusted software can access I/O ports only through TCB gates (at the software level), except that the
TCB can grant exclusive access by a process to the video controller ports. This provides protection against
access to the I/O ports by software.

The TSKSS also provides an I/O permission bitmap that contains information about I/O addresses to which
a particular process has access even if the CPL of the process is greater than the IOPL. However, this use of
the bit map is disabled during process initialization by the XTS-300. A process which has read/write access
to the console device can gain direct access to the video controller registers via a TCB request. If access is
granted by the TCB, the TCB enables particular bits in the I/O bitmap of the process which correspond to
the video controller ports. The TCB disables those bits if a secure attention event occurs.

The following instructions are \sensitive instructions" (they will only execute if the IOPL �eld is greater
than or equal to CPL), so on the XTS-300 they can only be used when operating at Ring 0:

� IN -input

� INS -input String

� OUT -output

� OUTS -output String

� CLI -clear Interrupt-Enable Flag

� STI -set Interrupt-Enable Flag

3.6 Primary XTS-300 Motherboard Chips

The motherboard is the heart of the XTS-300 processing hardware. Depending in the XTS-300 model, the
motherboard will come in one of two
avors. The Model 300 uses the Intel LX motherboard while the Model
500 uses the GX motherboard. The GX is a minor evolutionary step beyond the LX and is extremely similar
in functionality and layout. Where apppriate, the di�erences will be documented.

Note that only a single motherboard is used, there are no daughter boards which extend the central buses, and
all CPUs reside on the motherboard. The motherboard hosts a number of relatively complex subcomponents,

26
final: 3 August 2000

Final Evaluation Report Wang XTS-300
3.6. PRIMARY XTS-300 MOTHERBOARD CHIPS

including the CPU, hosts several controllers into which peripheral devices can be directly connected, and
hosts the \internal" buses into which all additional controllers are connected.

The Intel Pentium II/III motherboard has the following features:

� Intel Pentium II/III CPU support with L1 and L2 internal caches

� Designed for and supports multiprocessing

� Contains a PCI bus, ISA bus, and APIC bus as well as a host bus, maintenance bus and X bus.

� Contains a complex interrupt subsystem, including APIC and SMI support (though SMI is disabled).

� 64-bit data path to main memory

� Support for upto 64 Gbytes of main memory

� ISA devices and the keyboard controller are packaged as highly integrated chips

� Some additional controllers are integrated onto the motherboard: COM1/COM2, parallel, video, SCSI
host adapter, IDE (which is not used), and mouse.

� Version of BIOS which is software upgradable (partially) and which includes SCSI setup

In addition to the CPU, the Intel Pentium II/III motherboard contains the following major chips:

� Intel 82443LX (LX) or 82443GX (GX) PCI/AGP Controller (PAC)

� Intel 82371AB (LX) or 82371EB (GX) PCI-ISA Bridge (PIIX4)

� National Semiconductor PC87307 (LX) or PC87309 (GX) Super I/O

� Adaptec AIC-7880 (LX) or AIC-7896 (GX) SCSI Host Adapter

� Cirrus Logic CL-GD5446 (LX) or CL-GD5480 Video Controller

The video controller and SCSI controller are discussed in the \Peripheral Controllers and Devices" section
below. The on-board IDE controller, SMM and advanced power management, second
oppy controller, USB
port, infra-red, Intel NIC chip and Power management features are not used by the XTS-300.

The chips discussed below can only be programmed by software through speci�ed I/O ports (except that
APIC subcomponents use memory-mapped locations, which are not accessible outside the Kernel). Due to
IOPL and I/O bitmap settings established by the TCB, none of these ports are accessible from outside PL0.

3.6.1 PCI AGP Controller PAC

The PAC chip provides the following major functions: memory control, host-to-PCI bridge, and AGP inter-
face. These functions appear as two separate PCI devices, with the memory control and bridge in the �rst
PCI device. AGP is not used on the XTS-300. The PAC controls access to system memory by the CPU,
PCI and ISA bus masters. It mediates all requests from the CPU to PCI and ISA devices, part of which is

27
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 3. HARDWARE OVERVIEW

to translate the 64-bit, 66MHz (or 133 MHz for GX) host bus protocol to the 32-bit, 33MHz/66MHz PCI
bus protocol, and vice versa. It also performs bus arbitration for the PCI bus.

The PAC provides bu�ering to avoid bus wait states as much as possible. Note that though the CPU allows
36-bit addresses, the PAC only allows 32-bit addresses.11 The GX PAC is an evolutionary step beyond the
LX PAC, but is extremely similar. The GX PAC boots the host bus speed from 66MHz to 133MHz, supports
a larger theoretical main memory size, and supports additional power management features.

3.6.2 PCI-ISA Bridge (PIIX4)

The PIIX4 appears as four logical PCI devices: IDE unit, USB unit, advanced power management unit,
and the PCI-ISA bridge. Only the last of these is used on the XTS. The PIIX4 provides address, data,
and control line paths (and translation) between the PCI and ISA buses. It also contains data bu�ering
in both directions to boost performance. The PIIX4 allows concurrent PCI and ISA activity. The PIIX4
also directly implements a number of familiar ISA functions: bus control and arbitration, DMA controller,
master and slave PICs, PIT timers, X bus bridging, and RTC.

3.6.2.1 DMA Controller

The DMA controller function supported incorporates two 8237-compatible DMA controllers attached as
master and slave. Channel 4 is used for the cascade connection, so a total of seven channels is available. The
only DMA channel used is for the
oppy controller (#2).

3.6.2.2 Programmable Interrupt Controller PIC

The PIC(s) functions supported on the PIIX4 incorporates two 8259-compatible PICs attached as master
and slave. IRQ 2 is used for the cascade connection, leaving 15 IRQs that can be generated. IRQ 0 is
hard-wired to the PIT and IRQ 8 is hard-wired to the RTC.

3.6.2.3 Programmer Interval Timer PIT

The PIT supported on the PIIX4 incorporates a single 8254-compatible timer unit. The unit supports three
timers (0{3). As on the previous motherboard, timer 0 generates IRQ 0 and is used by the Kernel for
time-of-day and for unique identi�er generation. Timer 2 is used by the TCB to produce varying speaker
tones (this was also true on the previous motherboard). Timer 1 is used to implement refresh, which occurs
without OS and BIOS intervention.

3.6.2.4 Real Time Clock

The real-time clock is backward compatible with the real-time clock unit on the previous motherboard.
The RTC is bundled with 256 bytes of battery-backed RAM (compared to 50 bytes of ISA CMOS on the

11The motherboards have limited main memory to 2 Gbytes while the XTS-300 only uses 862 Mbytes maximum.

28
final: 3 August 2000

Final Evaluation Report Wang XTS-300
3.6. PRIMARY XTS-300 MOTHERBOARD CHIPS

previously evaluated system). The RTC uses IRQ 8. The Kernel uses the RTC in periodic interrupt mode
to implement alarms and delays.

3.6.3 Super I/O (SIO)

The SIO integrates a number of familiar ISA controllers:
oppy, serial (COM1 and COM2), parallel, and
keyboard/mouse. The SIO provides a simple 8-bit interface to these controllers. The SIO also contains
advanced power management and Plug-and-Play features, but these are disabled by BIOS setup and are not
used by the XTS-300. All the controllers can operate independently, except that they share the ISA bus
interface logic.

3.6.3.1 Serial I/O

The SIO contains two identical 16550-type UARTs, though one of them has advanced features (which are
not used on XTS-300) that can be used for extended UART mode and for infrared links. The UART
FIFOs are not used by the TCB. Connection to external serial devices is achieved via RS232 protocol and
handshaking selection. The SIO utilizes the universal asynchronous receiver and transmitter technology
(UART). Each serial channel has its own UART and each UART de�nes a separate I/O port address space
for communicating with the XTS-300. Each I/O port address corresponds with a particular UART register.

3.6.3.2 Floppy Controller

In addition, the SIO contains a
oppy controller which is very similar to the 82077A. The
oppy controller
controls a 3.5 inch micro
oppy disk drive. The drive can read and write either standard (1 Mbytes) or
high (2 Mbytes) density disks. The XTS-300 uses only high density disks. The
oppy disk can contain
data at various MAC labels (see Section 6.2.1.1, page 86); however, data
ow is controlled by the operating
system. This ensures that the correct address is being accessed at all times. The
oppy drive always passes
information via the
oppy controller and there is never direct communication between the
oppy drive and
any other component.

The
oppy controller sits on a 24-bit ISA bus. Because of this, the
oppy DMA bu�ers must reside in the
low 16 Mbytes of main memory. Also the 16-byte FIFO in the
oppy controller is enabled by software.

3.6.3.3 Keyboard Controller (KC)

The keyboard controller is PS/2 and compatible with older 8042A chips. The keyboard controller is actually
a microcoded hardware module and as such, the module contains its own embedded ROM, RAM, and
processor. The keyboard controller is connected to the keyboard by a serial line.

DMA is not used by the KC on the XTS-300 and RAM, which is not accessed by the system, is used by the
BIOS. All data transfers and keyboard/KC commands are sent via I/O port addresses, which are inaccessible
outside PL0.

The Secure Attention Key (SAK), which is used to invoke the trusted path function of the TCB, is provided
by the keyboard. The SAK allows the user to enter the trusted mode of operation or to abort a process

29
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 3. HARDWARE OVERVIEW

within the trusted mode. Detection of the SAK key being depressed is handled by the operating system
through interrupts. The SAK key for the XTS-300, while at the console, is the \system request" key.

The hardware does not interpret the SAK key. The keyboard generates IRQ 1. Commands can be sent to
the keyboard, and the keyboard must acknowledge commands. The TCB sends commands to the keyboard
to set the scan code set and to update the LEDs, and neither of these can be done directly by untrusted
software.

3.6.3.4 Mouse

A PS2 mouse is standard on the XTS-300. The keyboard controller handles the PS/2 mouse. PS/2 mouse
interrupts use IRQ 12. A PS/2 touchpad can also be used in lieu of a standard PS/2 mouse. Note that the
XTS-300 will also handle a serial mouse which communicates exclusively through a serial port.

3.6.3.5 Parallel Port

The Parallel Port on the XTS-300 is implemented in the ISA compatible National Semiconductor SuperI/O
chip included on the motherboard. The LX uses the PC97307 while the GX uses the PC87309. This device
features a full IEEE 1284 compliant bidirectional parallel port which supports the Extended Capabilities
Port (ECP) including level 2. The SIO chip is implemented as numerous logical devices - the parallel port is
logical device #4 on the LX and #1 on the GX. Each logical device is distinct and is addressed separately
even though they physically reside on the same chip.

Although supported by hardware, the SPP and EPP modes are not used on the XTS-300. The Extended
Capabilities Port (ECP) con�guration o�ers high bi-directional throughput, eÆcient hardware based han-
dling, including a bi-directional 16-level FIFO with threshold interrupts for both Programmed I/O (PIO)
and DMA (ISA) data transfer. A FIFO threshold interrupt can be con�gured as well as FIFO empty and
full status bits, automatic generation of strobes (by the hardware) to �ll or empty the FIFO, transfer of
commands and data. The XTS-300 uses the ECP FIFO but does not allow DMA operations to take place.
It �lls the FIFO and will be noti�ed by an interrupt when eight or more bytes are free. While the Parallel
Port supports Plug and Play operation allowing its interrupts to be routed on any IRQ from 1 to 15 except
for 2 and 13, this feature is not used by the XTS-300 so that the standard IRQ of 7 is always used.

3.7 Peripheral Controllers and Devices

In addition to the main motherboard components, the XTS-300 hardware base also contains other controllers
and devices. These are described below:

3.7.1 Multi-Channel Serial I/O Interface (SIO4)

The Multi-Channel Serial I/O Interface card (SIO4) supplies four asynchronous serial ports to the XTS-300.
Each serial port on the card has its own UART and support chips. On newer versions of the card, the UARTs
are integrated into a single chip. Each UART de�nes a separate I/O address space used to communicate
with the XTS-300.

30
final: 3 August 2000

Final Evaluation Report Wang XTS-300
3.7. PERIPHERAL CONTROLLERS AND DEVICES

3.7.2 Video Controller

The XTS-300 video controller is packaged in a single chip which is integrated onto the motherboard. This
chip interfaces directly to the PCI bus.

The LX motherboard uses 1 Mbyte of display (video) memory, while the GX motherboard will support 2
Mbytes. This amount of video memory allows standard and VESA high resolutions to be displayed: up
to 1280x1024 with 16 colors. All memory access is 32 bit in nature. A FIFO is used to minimize memory
contention.

The video controller on the LX motherboard uses the Cirrus Logic chip CL-GD5446 while the GX mother-
board uses the CL-GD5480 - both on the motherboard. Both chips do not use downloadable microcode. The
video BIOS, which is stored in
ash memory on the motherboard along with the system BIOS, is not accessi-
ble to XTS-300 programs because the XTS-300 does not allow programs to map that area into their address
space. There is no mechanism using the video chip I/O ports or memory to accomplish this. Furthermore,
the XTS-300 STOP OS does not make use of the video BIOS itself, although video card initialization and
POST tests are run from the video BIOS when the system is powered up or reset.

The video controller is basically an output only device on the XTS-300. Although the controller accepts
commands, data
ows only in one direction | from the XTS-300 console driver to the video display. Though
the console device can be shared by multiple processes, all such processes are at the same mandatory access
control level as the console.

The video controller is broken up into four main functional areas: the VGA Sequencer, the Graphics Con-
troller, the CRT Controller (Color/Mono) and the Attribute Controller. Additional components for both the
CL-GD5446 and CL-GD5480 integrated chips include: The Hardware Video Window for the simultaneous
display of graphics and text, the Video Capture which writes realtime or recorded video from a decoder to
the frame bu�er for display in a video window, and the Pallete DAC which contains the color palettte and
three 8-bit to analog converters. Note that while supported by the chip, a Video Capture hardware interface
including V-Port and I2G are not used on the XTS-300 integrated video controller. In addition, although
the CL-GD5480 is capable of acting as a bus-master via the video stream engine, this capability is disabled
by the XTS-300 by clearing the bus master enable bit in the card's PCI command register which is not
accessible outside the Kernel.

The Kernel, or a process which has been granted direct access, can manipulate data on the screen by merely
moving/storing directly into the memory-mapped video memory.

The XTS-300 normally uses the video controller in text mode. Speci�cally, it uses the 80x24 CGA text
mode. However, an application can, under controlled circumstances, set the console in graphics mode and
thus utilize the Graphics controller.

Normally, both the memory-mapped addresses and the control registers that are mapped into the XTS-300
I/O address space are inaccessible outside of the kernel. This is enforced via the IOPL �eld (I/O addresses)
and the appropriate segment descriptor (memory-mapped addresses) in the kernel. All I/O to the video
controller must be done through the normal system gates (e.g., device io, device control).

A single process at a time may request exclusive access to both a small subset of the video controller's
I/O address space and/or the entire video memory. In that case, the system is careful to ensure that the
manipulation done to either is visible only to that process. Such a process can perform I/O directly using
either I/O instructions or referencing the video memory. However, whenever communication is requested to

31
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 3. HARDWARE OVERVIEW

the TCB by the SAK key, the system will always place the console in text mode, back in a known state, and
will disable access by untrusted processes to the video hardware.

Note that the video controller does not interrupt the system to signal that it has completed its task. It
is theoretically possible to program the controller via jumpers on the board to interrupt at the end of the
current active display frame, but this is not done on the XTS-300.

The monitor is an output-only device when used by the XTS-300. The XTS-300 treats it as part of the
console logical device, which also includes the keyboard and mouse. The mandatory level of the monitor is
the same as the current session level of the user logged into the console.

3.7.3 Mouse

No particular model of mouse is speci�ed for the XTS-300. The mouse need only be either the basic RS-232
serial type or a standard PS/2 mouse connected to the PS/2 port. The mouse must not have a memory of
previous mouse activity nor the ability to be programmed to edit the signal send to the host.

The mouse is an input-only device when used by the XTS-300. The XTS-300 treats it as part of the console
logical device, which also includes the keyboard and monitor.

3.7.4 SCSI Host Adapter

The XTS-300 SCSI host adapter is packaged in a single chip which is integrated onto the motherboard. This
chip interfaces directly to the PCI bus. The host adapter provides an interface between the application and
system software and the SCSI \target" devices: hard disks, tape drives, PC card readers, CD-ROM drives,
and Data Transfer Cartridge Readers. The host adapter controls data transfers to and from the target
devices. Multiple instances of these devices can populate the primary and/or secondary SCSI bus.

The LX motherboard uses the AIC7880 model. The AIC7880 is a highly integrated chip that can perform
all the functionality that used to be allocated to multiple subcomponents. The host adapters can manage
the SCSI bus asynchronously to CPU operations and thereby serve as a coprocessor to the CPU.

The GX motherboard uses the AIC7896 model. In addition to the characteristics of the AIC7880, the
AIC7896 is actually two independent SCSI host adapters on the same chip. These adapters each have their
own memory, CPU, buses, and I/O base address space. They share an IRQ, as do all SCSI host adapters on
the XTS-300. Each half of this chip is equivalent to the Adaptec 7890 host adapter chip.

Both the AIC7880 and AIC7896 are SCSI-2 compliant allowing \fast", up to 40 Mbytes synchronous transfers
over a SCSI bus. The AIC7896 is also SCSI-3 compliant allowing \ultra fast", up to 80MB synchronous
transfers over a SCSI bus. Both models and the SCSI bus conform to ANSI X3.131-1986 (\SCSI-1"). They
also conform to the Common Command Set standard for SCSI communication: ANSI X3T9.2/85-52. SCSI-2
(ANSI X3T9.2/86-109) is a superset of the other two standards.

Both host adapters supports the wide SCSI bus or a narrow SCSI bus, and will be con�gured appropriately
in the XTS-300 depending on the nature of the device being connected. Narrow devices will be con�gured
to use a narrow bus, and wide devices (mostly hard disks) will be con�gured to use a wide SCSI bus.
Both host adapters support \ultra" speed SCSI bus transfers and \di�erential" SCSI buses, in addition to
\single-ended" SCSI buses. The AIC7896 also supports \ultra2" speed SCSI bus transfers. Note that for

32
final: 3 August 2000

Final Evaluation Report Wang XTS-300
3.7. PERIPHERAL CONTROLLERS AND DEVICES

optimal performance, the AIC7896 is normally con�gured (and has the connectors arranged to support) one
\di�erential" or LVD bus and one \non-di�erential" or SE bus. LVD devices are to be connected to the LVD
bus, and take full advantage of the LVD architecture, while SE devices are connected to the other bus and
run at their maximum speeds.

Additional SCSI buses can be con�gured on both motherboards. To do so, extra cards are installed on the
PCI bus. The AIC2940U is used to expand the SCSI subsystem on the LX motherboard using the AIC7880
chipset. Though the 7880 chipset allows use of a wide and/or di�erential SCSI bus, the 2940U does not
support those options. The 2940U2W is used in the GX with the AIC7896 chipset. The AIC2940U2W
provides the same functionality as the motherboard versions. However, an external SCSI device cabinet is
used to connect the additional bus to the controller. They are connected together via an external SCSI
cable. The cabinet provides power and SCSI connectors for up to 15 target devices and accepts a SCSI bus
terminator plug. Both the GX and LX models will support a maximum of four SCSI buses total.

The adapter is capable of performing DMA transfer to the system memory. It is also capable of performing
scatter/gather functions; however, this function is utilized only within the Kernel. The Kernel does not make
scatter/gather functionality available to outer ring software.

There are a number of I/O ports on the adapter and some structures are memory-mapped. The Kernel
ensures that these ports and memory-mapped areas cannot be accessed from outside PL0. There are internal
registers and RAM on the host adapter, but these are not used by the Kernel. An I/O request will indirectly
write some of these locations, but, the locations can never be read by outer ring software.

Microcode exists on the adapter and must be downloaded by the TCB during system startup. The TCB
prevents further downloads after that.

Separation of data is dependent upon the Ring 0 software.

3.7.5 Hard Disk

The hard disks used on the XTS-300 are all SCSI devices with asynchronous or synchronous, wide or narrow,
ultra or ultra2 interfaces. \Di�erential" or LVD types are supported as well. The hard disks come in various
sizes from 4 Mbytes up to 36 Gbytes. As many disks as can be accommodated on the SCSI bus(es) can be
con�gured. Like other supported SCSI devices, a given device communicates with the system only across
the SCSI bus and only communicates with the SCSI host adapter, not with other SCSI devices. The CPU
cannot directly access registers and bu�ers on the drive.

3.7.6 DAT Tape Drive

The DAT tape drive supports 4mm tapes, records in the DDS, DDS-2 or DDS-3 tape format, and can write
up to 12 Gbyte of uncompressed data. In addition, it features on-board hardware data compression, allowing
it to write and read compressed data. It is SCSI-2 compliant and can perform synchronous data transfers.

The tape drive is designed to allow a �rmware download from specially formatted tapes. However, a special
�rmware build for those units designated for the XTS-300 has disabled this feature. This �rmware build was
obtained from the vendor and is applied by Wang during assembly of each XTS-300. Further attempts to
load �rmware result in an immediate eject of the �rmware tape.

33
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 3. HARDWARE OVERVIEW

A SCSI tape drive exists on the XTS-300 as a single level device only. However, privileged backup/restore
software on the XTS-300 is capable of writing multi-level data on the tape. It is up to that privileged software
to properly identify and label each unit of data so that it might later be properly retrieved and placed at
the correct level with the proper security protections.

To help ensure data integrity on the tape drive, parity checking is enabled on the SCSI bus, informing the
host of any data corruption problem during a bus transfer. In addition, the drives use three-layer hardware
ECC, read-after-write veri�cation and data frame checksums.

3.7.7 Ethernet Controller

The ethernet adapter (Znyx NetBlaster Twisted Pair Lan Adapter) is a PCI board designed to connect the
XTS-300 directly to either two (ZX348/ZX348Q) or four (ZX346/ZX346Q) LANs. To accomplish this, the
Ethernet adapter uses the IEEE 802.3 10BaseT or 100BaseTx connections.

The ethernet adapter card appears to the system as a PCI bus with four slots. This is accomplished using
the 21152 PCI to PCI bridge chip. Each slot provides one ethernet connection using a separate 21140 chip on
the ZX346/ZX348 or 21143 chip on the ZX346Q/ZX348Q which occupies one PCI slot each on the ethernet
board. Each ethernet connection is also connected to the physical LAN via separate ICS1890Y transceiver
chips and XFATM2 transformers on the ZX346/ZX348 or the QS6611 transceiver with the transformers
integrated on the RJ45 on the ZX346Q/zx348Q. Each device also has independent clock sources provided by
the 21152 controller chip. Each port on the board acts as if it is an independent board and will be referred
to as an Ethernet device. The two port board is identical to the four port board except for unpopulated
chip positions. Each port has its own memory base and I/O base. The XTS-300 only uses the IRQ and I/O
base, there is no reference to the memory base in the software.

The Ethernet controllers do not have on-board BIOSs or �rmware. There is no interaction between them
and any other peripheral device on the system. Also, the Ethernet controller is a single level device. The
device drivers in the operating system handle the separation of data.

3.7.8 PC Card Reader

The PC card reader supports type I, II, or III cards which conform to PCMCIA version 2.1 (though type
III cards can only be used in the lower slot and only when no card is in the upper slot). The PC card reader
used on the XTS-300 is either a dual slot or eight slot reader which can simultaneously access two PC cards,
or eight PC cards respectively.

The reader conforms to the SCSI-2 standard and is a simple SCSI device in that it is a narrow device
(i.e., 8-bit bus). All models support asynchronous SCSI bus transfers, while the eight slot model supports
synchronous transfer. The PC card reader is unique among the XTS-300 SCSI target devices in that the
physical unit accommodates multiple readers and these are addressed using di�erent logical units. The reader
also de�nes two di�erent address spaces withn the slot which are accessed using di�erent LUNs: attribute
memory (32 Mbytes) and common memory (64 Mbytes). The two slot version actually assigns di�erent LUNs
for the di�erent address spaces. Although each slot (each an LUN pair) are treated as separate, independent
devices by the TCB, the two LUNs which are associated with a particular slot are not. This brings the
total number of logical units supported by a single two-slot reader to four. By contrast, the eight-slot model
uses the di�erent memory address spaces within the slot via a bit setting in the speci�c read/write SCSI

34
final: 3 August 2000

Final Evaluation Report Wang XTS-300
3.7. PERIPHERAL CONTROLLERS AND DEVICES

command block. The TCB device drivers adjust the setting of this bit based on the memory address being
targeted.

The �rmware cannot be modi�ed using SCSI commands and cannot be downloaded from a PC card. The
PCMCIA speci�cation de�nes structures (such as the CIS) and formats in the address spaces of the PC card,
but the TCB is not aware of these and does not attempt to verify them or maintain their integrity.

The only kind of PC card supported by the XTS-300 is a Fortezza card. A Fortezza card is a sophisticated
cryptographic device with on-card microprocessor, �rmware, ROM, and RAM. A Fortezza card supports
many commands, such as encrypt, decrypt, sign, and update keys. The card also protects itself from
unapproved access by maintaining PINs and di�erent user personalities.

As is the case for other removable media (i.e., tape, CD-ROM, diskette, and DTCR), the Fortezza card itself
is not part of the evaluated hardware con�guration. The TCB never uses a PC card for its own purposes
(such as encrypting the password �le) and does not rely on correct operation of the reader. From the point
of view of the TCB, all data on a Fortezza card is at a single level, that level must be externally associated
with the card, and the operator must set the level of the PC card reader to that level before the card is
inserted. Site procedures are required to ensure that only Fortezza PC cards are used and that Fortezza
cards are not removed from the reader while the device is in use (indicated on the front of the device by an
LED).

The reader is not involved in trusted path nor I&A from the perspective of the TCB. The fact that the
Fortezza card maintains PINs and personality information is irrelevant to the TCB. The TCB does not
attempt to correlate user information on the card with information in the XTS-300 trusted databases and
the TCB does not provide a trusted path for users to enter a PIN for card access.

3.7.9 CD-ROM Drive

The CD-ROM supported by the XTS-300 is a SCSI-2 device that runs at 6-14X and 17.3-40X speed. It
is a removable device with an audio/headphone circuit. This device supports Compact Discs (CDs) with
the CD-DA (audio), Red-Book, Photo CD (multi-session) CD-Extra, Yellow-Book, Video CD (MPEG),
CD-RW(Read), CD-ROM XA, CD-I, CD-I Ready, CD-R(Read), CD-I Bridge and CD-G.

The CD-ROM is pre-programmed with downloadable �rmware. However, in order to be downloaded, the
host must use the SCSI Write Bu�er command to accomplish this. The XTS-300 does not use this command
or allow any application to send it to the device.

A CD-ROM, unlike an XTS-300 hard disk, is a read-only, single level device. The TCB ensures that the
device cannot be mounted and that it is a single partition device. A CD-ROM disk is never treated as if it
contained a STOP �le system. The TCB does not itself rely on correct operation of the CD drive.

There is no direct communication between the CPU and the CD-ROM drive. All communication proceeds
through the SCSI host adapter.

The CD-ROM comes with special audio auxiliary controls, a headphone jack and an audio output connector
to a sound board or audio ampli�er. Since the XTS-300 operates only on CD Type I discs, these controls have
no meaning on a STOP operating system and should not be connected or used (which must be guaranteed
by site procedures).

35
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 3. HARDWARE OVERVIEW

3.7.10 Data Transfer Cartridge Reader(DTCR)

The Data Transfer Cartridge Reader (DTCR) device is a drive for a removable cartridge. The cartridge,
named a \data transfer cartridge" (DTC), is a specialized device for transferring avionics data to an aircraft
before a
ight and from an aircraft after a
ight. The DTC is a solid-state, random-access device with
battery power to preserve data while not plugged in to a reader.

The DTCR conforms to the SCSI-2 standard and is a simple SCSI device in that it is a narrow device (i.e.,
8-bit bus), supports only asynchronous SCSI bus transfers, and supports only a single physical unit per SCSI
ID (though the physical unit can be accessed via two logical unit numbers (LUNs)).

The operational �rmware can be modi�ed using SCSI commands, though this functionality is not allowed
by the TCB.

The DTCR partitions memory on the DTC into two regions: a �le allocation table (FAT) and a �le data area.
The structures and formats in these areas are set by applications, not by the hardware or �rmware. Access
is made to the FAT using LUN 0 and access to the �le area is made using LUN 1. Two di�erent processes
could open the di�erent partitions, but the TCB software ensures that the two partitions are always at the
same MAC level | therefore the DTCR is a single-level device. The TCB never uses the DTCR for its own
purposes and therefore does not rely on correct functioning of the device.

3.8 Multiprocessor Architecture and Environment

The XTS-300 APIC controlled bus has the capability to support up to eight independent processors operating
in a tightly coupled symmetrical Multi-Processor (MP) system. However, when run under the control of
STOP 5.2.E there is a limit of two processors in the
at mode scheme. An APIC is an integrated piece of
the CPU. The hardware supports two di�erent kinds of APICs. The local APIC is an integrated component
of the CPU chip. At the system level, there is a distinct I/O APIC which is disabled by the XTS-300. All
the CPUs in the system are interconnected though the APIC bus. Although the software assigns each CPU
a unique number (logical CPUID), the hardware identi�es the CPU by another number (physical CPUID)
which may be di�erent.

In a system initialization sequence, there is a competition among physically connected CPU to be the boot
processor. The software then assigns the boot processor a logical CPU number of zero. The other CPU is
then assigned in the order that the boot processor wakes them up. Once STOP 5.2.E is fully initialized,
the XTS-300 operates as a fully symmetrical MP system (i.e., all processors are equal, and can perform all
operations with all devices).12

3.8.1 Memory Organization

All processors share the same physical memory. Furthermore, all processors execute the same copy of the
operating system. Controlled access to the system resources is accomplished using spin locks as implemented
with read/write interlock instructions, see Section 3.8.1.2.

12The one anomaly is that only logical processor #0 handles device interrupts.

36
final: 3 August 2000

Final Evaluation Report Wang XTS-300
3.8. MULTIPROCESSOR ARCHITECTURE AND ENVIRONMENT

3.8.1.1 Intel Cache Memory Considerations

Although the Intel hardware ensures the consistency in an MP environment between the di�erent on-
board/external instruction and data caches, special consideration is given by the XTS-300 operating system
to ensure that the special page descriptor translation lookaside bu�er (TLB) and processor segment shadow
registers are updated properly in all CPUs.

3.8.1.2 Read/Write Interlock Instructions

Software race conditions in an MP environment can be controlled by spin-locks if lock words can be set
atomically by a given processor. Any processor can serialize access to memory through the use of locked bus
cycles. Requests for control of the bus are ignored during locked cycles.

The XTS-300 supports certain memory locking instructions which are needed in order to support tightly
coupled MP operations. These instructions are divided between the bit test and change instructions, ex-
change instructions, and various one/two operand arithmentic and logical instructions. Locking is generally
accomplished through the use of the lock pre�x for each instruction.13 Locking is guaranteed only to the
level of lock operand (8, 16, 32 or 64 bit chunk), but a larger memory area may be locked The integrity of
the lock is not dependent on memory �eld alignment. Rather, the lock (LOCK#) signal is asserted for as
many bus cycles as necessary to update the entire operand.

The L1 and L2 caches are write-back caches. Cache coherency between Intel Pentium II/III processors
are maintained by the SNOOPER mechanism on the BIU which detects through snooping that another
processor has attempted to access memory location that it has modi�ed but not yet written back to system
memory. That SNOOPING processor will signal the other processor through the HITM# signal and send
it the contents of the memory location at the same time. It is the responsibility of the memory controller to
snoop this signal and update memory.

The bit test and change instructions consist of the following: Bit Test and Set (BTS) and the Bit Test and
Reset (BTR) The exchange instructions include the Exchange Register/Memory with Register (XCHG),
Exchange and Add (XADD), and Compare and Exchange (CMPEXG). The arithemetic and logical instruc-
tions include Increment by 1 (INC), Decrement by 1 (DEC), One's Complement Negation (NOT), Two's
Complement Negation (NEG), Add (ADD), Add with Carry (ADC), Integer Subtraction (SUB), Integer
Subtraction with Borrow (SBB), Logical And (AND), Logical Or (OR), and Logical Exclusive Or (XOR)

3.8.2 The Interprocessor Interrupt (IPI)

The IPI interrupt mechanism allows one processor to interrupt another processor in order to perform a
speci�c function such as
ushing part or all of the target processor's TLB. The IPI interrupt is also used to
start the second processor during system initialization. The IPI interrupt acts like an INT instruction on a
speci�c IRQ.14

13The exchange instructions do not need to have the lock pre�x set.
14The XTS-300 uses a software generated NMIinterrupt.

37
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 3. HARDWARE OVERVIEW

3.8.3 APIC Programmable Timer

The APIC Programmable timer is used as a timeslice clock. There is one timer per CPU. When interrupted,
the Scheduler process associated with the CPU will take control and perform its scheduling functions.

3.8.4 Locking on the APIC Controlled Bus

Bus masters use the lock bus cycle mechanism to ensure that there is reliable communication between them.
The Intel Pentium II/III processor protects the integrity of certain critical memory operations by asserting an
output signal called LOCK#. Reads and writes of aligned 64 bit operands and 128 bit instruction prefetches
are protected by an output signal called PLOCK#. The processor automatically asserts one of these signals
during certain critical memory operations while the software can specify that other select memory operations
need to have LOCK# asserted.15

Some critical memory operations that automatically assert the LOCK# signal include: acknowledging in-
terrupts, setting the Busy bit of a TSS descriptor, updating segment descriptors,16 updating page directory
and page table entries, and executing an XCHG instruction.

3.8.5 IO

Any processor can issue an I/O request to any device. However, the interrupts on completion will be always
handled by the boot processor.17 Hence, it is possible to initiate I/O on one processor, and �eld the interrupt
on another processor.

3.9 Hardware Initialization

The system BIOS provides a means for booting the XTS-300 (though it is used more generally by some other
operating systems to communicate with hardware and vice versa). The BIOS resides in a \
ash" memory
component o� the X bus (which is managed by the PIIX4). This
ash memory is non-volatile, but can be
written using appropriate command sequences (which is useful for BIOS upgrades or recovery). However, in
an evaluated con�guration, the OS never writes to
ash memory, the OS does not allow untrusted code to
write to
ash memory, and the site must not allow users to load BIOS from diskette.

The Opsys Loader is loaded by the BIOS and, once loaded, disables the BIOS from being invoked by the
system again. In addition, the vector table used to invoke the BIOS is destroyed by the Opsys Loader. For
more information on testing and initialization, see Section 7.6, page 110 on system integrity.

The BIOS is logically divided into the following parts:

� General, system BIOS

15This is accomplished through the lock instruction pre�x.
16The STOP 5.2.E also ensures that the segment shadow registers are up to date when one processor modi�es a segment

attribute
17During startup, the boot processor speci�es via an APIC register setting that all interrupts will be sent to it.

38
final: 3 August 2000

Final Evaluation Report Wang XTS-300
3.9. HARDWARE INITIALIZATION

� Power-on self tests (POST)

� Update recovery code

� Video BIOS

� SCSI host BIOS

� Setup and SCSISelect

3.9.1 Power On Self Test (POST)

POST initializes some data structures, tests system components, and boots the operating system. More
speci�cally, POST writes to the CMOS RAM and the low memory information regarding the system con-
�guration. POST tests the system, the ROM and the RAM. POST also sets the interrupt vector table and
checks for peripheral equipment.

To run the POST, one of three methods can be employed; turn the XTS-300 on; press the reset button on
the Intel Pentium II/III; or press hcontroli-halti-hdeletei on the keyboard if DOS is currently booted.

3.9.2 BIOS Setup Utility and Diagnostics and Utility Software

The BIOS setup utility retrieves information about the hard disk drive,
oppy drives, monitor, date and
time and stores the information in CMOS RAM. The diagnostics and utility software checks the system
components, runs o�-line, and reports any errors to the user. To run the BIOS setup utility, the hdeletei key
must be pressed when prompted at system startup. To run the diagnostics and utility software, the XTS-300
must be shut down and a special DOS diskette must be booted.

Setup (SCU/SSU) is a superset of the BIOS \setup" utility. SCSISelect is used to con�gure the SCSI
subsystem. SCU/SSU and SCSISelect are used during hardware assembly to establish a number of hardware
parameters.

39
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 3. HARDWARE OVERVIEW

This page intentionally left blank

40
final: 3 August 2000

Final Evaluation Report Wang XTS-300

Chapter 4

Software Overview

4.1 Introduction

This section provides a general description of the software portion of XTS-300, STOP 5.2.E. The software
components of the Trusted Computer Base (TCB) are the Security Kernel, TCB System Services (TSS),
and the Trusted Software. There is also an untrusted software component of the supplied system called
Commodity Application System Services (CASS). The �rst portion of the Software Overview is an intro-
duction which brie
y describes each of the software components. This is followed by a description of the
process environment. Since the process is the major active entity (i.e., that which causes information to

ow or changes the system state), the discussion of how the software components �t together to form the
process environment is a precursor to the more detailed discussions that follow. The kernel is presented �rst,
followed by a discussion of system initialization. TSS, Trusted Software, and CASS are then discussed in
detail, each in its own subsection.

4.2 Software Components

The Security Kernel software occupies the innermost and most privileged ring and performs all Mandatory
Access Control (MAC). The kernel provides a virtual process environment, which isolates one process from
another. The kernel implements a variation of the reference monitor concept. When a process requests access
to an object, the kernel performs the access checks, and, given that the checks pass, maps the object into
the process' address space. Subsequent accesses are mediated by the hardware. The Security Kernel also
provides I/O services and an Interprocess Communication (IPC) message mechanism. The Security Kernel
is part of every process' address space and is protected by the ring structure supported by the hardware.

The TSS software executes in Ring 1. TSS provides trusted system services required by both trusted and
untrusted processes. TSS has the responsibility for creation and loading of both trusted and untrusted
programs in STOP 5.2.E. TSS converts the
at kernel segment structure into a hierarchical �le system. TSS
software enforces the Discretionary Access Control (DAC) policy to �le system objects and segments.

Trusted Software performs security-relevant functions and executes in Ring 2. Software is considered trusted
in STOP 5.2.E if it performs functions upon which the system depends to enforce the security policy (e.g.,
the establishment of user authorization). Some processes require privileges (see Section 6.3.4, page 92) to
perform their functions. An example of a process that requires privileges is the Secure Server, which needs
access to the User Access Authentication database, kept at system high access level, while establishing a
session for a user at another security level. Figure 4.1 depicts the structure of a trusted process running on
XTS-300.

CASS also executes in Ring 2. CASS provides a UNIX-like interface for user-written applications. The
purpose of CASS is to make the multilevel security execution environment transparent to software running

41
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

Trusted System

Services Domain

(Ring 1)

Operating System

Services Domain

(Ring 2)

Kernel Domain

(Ring 0)

Trusted Computing Base

Users

Trusted System Software (TS)

TCB System Services (TSS)

Security Kernel

COTS PII or PIII/PCI Components

Figure 4.1. XTS-300 System Diagram { TCB Process

42
final: 3 August 2000

Final Evaluation Report Wang XTS-300
4.2. SOFTWARE COMPONENTS

in the Application Domain (Ring 3). Figure 4.2 depicts the structure of an untrusted process running on
XTS-300.

Software

Application Runtime

Libraries

Users

: Trusted Computing Base

Operating System

Services Domain

(Ring 2)

Services Domain

(Ring 1)

Kernel Domain

Trusted System

Application

Domain

(Ring 3)

(Ring 0)

TCB System Services (TSS)

Security Kernel

Commodity Application System Services

COTS PII or PIII/PCI Components

Figure 4.2. XTS-300 System Diagram { Untrusted Process

The virtual address space for a process is depicted in Figure 4.3. The �rst ten segments are shown to contain
global information. These segments are included in every process' address space. All global data segments
(kernel declared data, memory map, and the global pool) are accessible only by the kernel. They contain
data structures important to the management of the system. The other segments contain the object code
for the kernel, TSS, and CASS.

The Binary Compatibility Standard (BCS) segments exist to implement the BCS calling interface for Ring
3 programs and trusted programs running in Ring 2. The memory space for BCS is implemented by special
code and data \super descriptors." The two descriptors contain the same base address. The descriptors are
separate because the Intel Pentium II/III does not allow both execute and write access to the same segment
through the same descriptor. However, the end result is that Ring 2 and Ring 3 processes can access all BCS
segments for both execute and write access. The BCS memory space contains the code, static data, dynamic

43
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

Proprietary �gure removed

Figure 4.3. Process Virtual Memory Address Space

Proprietary �gure removed

Figure 4.4. Process Linear Memory Address Space

data, and stack. The BCS segments are completely overlapping. All memory allocated to such segments for
a process is potentially available to that process.

However, segment accesses from BCS segments to non-BCS segments is prevented by the hardware and the
TCB. The super descriptors refer to distinct regions of the PDIR from those used by the TCB. The kernel
prevents allocation of Ring 3 segments below PDIR entry 128 which is beyond all the entries needed by the
TCB. Further, a full-size (1024-page) pagetable is allocated for each valid PDIR entry for a BCS segment.
Each time an invalid PDIR entry is referenced by a process, a full-size pagetable is allocated during page
fault processing.

Transfers to BCS segments from an inner ring are performed by setting the CS register to point to the BCS
code segment and by setting the DS and SS registers to point to the BCS data segment.

BCS segments are not mapped from the �le. The code and data are copied into memory. As a result, changes
to the access of the program �le do not a�ect a process currently executing the �le. Access changes to the
BCS segments by another process cannot be performed because the BCS segments are treated as temporary
segments. Access changes to temporary segments are disallowed by the TCB.

The BCS segments require a contiguous range of at least 512 PDIR entries so that a minimum 2 Gbyte is
available for Ring 3 programs. The BCS segments encompass a total of 896 PDIR entries.

As shown in Figure 4.3, the rest of the process address space is private to each process. The kernel, TSS,
and CASS all have associated process-local data structures contained in the data segments. Each ring also
has an associated stack private to the process. Even if a process is executing in the kernel, it does not have
direct access to other processes or objects to which those processes have access. An object must be mapped
into the currently executing process' address space in order for the process to access the object.

The Intel Pentium II/III provides for a Paging Directory (PDIR) between the segment descriptors and
pagetables to allow greater
exibility in implementing the operating system. The PDIR de�nes a linear
address space. Segment descriptors that de�ne a portion of memory point at PDIR entries instead of
pagetables (see Section 3.3.3.1, page 16 for more details on pagetables and segment descriptors). Each
process has its own PDIR. Process-local segments point to one, unique PDIR entry and use the same entry
that is equal to the segment number. In XTS-300, virtual addresses are translated to linear addresses then
translated to physical addresses.

44
final: 3 August 2000

Final Evaluation Report Wang XTS-300
4.3. PROCESS ENVIRONMENT

4.3 Process Environment

The virtual process environment on XTS-300 is de�ned by the four hierarchical domains which are enforced
by the hardware ring mechanism. The domain of greatest privilege is Ring 0, that of the kernel. The domain
of least privilege is Ring 3, that of untrusted processes. While executing within a domain, a process has
direct access only to the resources of that domain and those of less privileged domains. Processes have other
attributes which characterize them in addition to the domain in which they execute. MAC labels, integrity
levels, privileges, and capabilities are examples. For more information, see Chapter 6.

The environments for each ring are set up by the adjacent ring that is more privileged. When a process is
being created, the kernel creates the process-local Ring 0 and Ring 1 environments used for process execution.
TSS creates the local Ring 2 environment, and if the process is untrusted, CASS creates the local Ring 3
environment.

The following two types of process environments are supported on XTS-300:

� Untrusted Application Process

� Trusted Application/System Process.

The environment for each type of process is described below.

4.3.1 Untrusted Process Environment

For an untrusted process, the environment consists of four hierarchical domains:

Ring 3 The Application or User Domain. For user-written applications, this is the only domain
available. Runtime library support software for an untrusted process also runs in this domain.

Ring 2 The Operating System Services (OSS) Domain. CASS software runs in this domain. The
primary purpose of CASS is to convert the primitive TCB interface into one usable for
applications software. CASS also provides I/O and process control services to user-written
applications. CASS is considered to be high integrity system software. As such, the CASS
layer provides untrusted operating system services to user-written application software. It
is not part of the TCB.

Ring 1 The TSS Domain. The primary purpose of the software in the TSS Domain is to provide
the �le system hierarchy. TSS also loads trusted and untrusted programs in STOP 5.2.E.

Ring 0 The Kernel Domain. The Security Kernel portion of the TCB runs in this domain. A subset
of kernel services are callable from untrusted software running in Ring 2.

The software in the Kernel, TSS, and OSS Domains is mapped into the address space of all untrusted
processes.

The untrusted environment is restricted to the following:

� Execution within the OSS and Application Domains

45
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

� Execution with integrity below the operator integrity level

� Execution with no Security Kernel privileges

� Establishment of an untrusted process via the run command or the start daemon program in Trusted
Software or from the system prompt (if programs with an integrity level below operator have been
installed via the tp edit utility).

4.3.2 Trusted Process Environment

For a trusted system or application process, the environment consists of three hierarchical domains:

Ring 2 The OSS Domain. This domain contains various trusted system functions, collectively re-
ferred to as Trusted Software. This portion of the TCB provides specialized security-relevant
services.

Ring 1 The TSS Domain. This domain contains the TSS portion of the TCB.

Ring 0 The Kernel Domain. The Security Kernel software runs in this domain.

Software in the Kernel and TSS Domains is mapped into the address space of all trusted processes. A
degenerate case of a trusted process is a kernel process whose environment consists entirely of the Kernel
Domain. For a discussion of kernel processes, see below.

4.3.3 TCB Interface

There are four di�erent mechanisms, or entry points, that provide access to the TCB. The entry mechanisms
to the TCB are:

� The Kernel gate that causes a service to be performed on behalf of the caller, followed by a return.

� The TSS gate that also involves performing a service for the caller, followed by a return.

� The Secure Server as invoked by the Secure Attention Key, that establishes a connection with the TCB
for the purposes of invoking a trusted process.

� The hardware, which includes instruction execution and traps, exceptions processing, and interrupts
from I/O devices.

4.4 System Initialization

System initialization is performed in two phases. The �rst is performed by the system loader and the kernel
startup process; the second is performed by the Secure Startup process in Trusted Software (see Section
4.7.1.1, page 63, for more details).

Proprietary material removed.

46
final: 3 August 2000

Final Evaluation Report Wang XTS-300
4.5. SECURITY KERNEL

4.5 Security Kernel

This section provides a general description of the Security Kernel. The kernel architecture, security-relevant
features, and kernel entry mechanisms are discussed as well as other important kernel features. The areas
of the kernel discussed in more detail are: segment management, process management, device management,
memory management, scheduling, and the support functions.

4.5.1 Security Kernel Architecture

Proprietary �gure removed

Figure 4.5. Kernel Hierarchy Diagram

Proprietary material removed.

4.5.2 Kernel Entry and Return

Once initialized, the kernel can only be invoked via the kernel gate, hardware traps, faults, and interrupts.
The primary purpose of the kernel gate is to validate access of the caller and to call the appropriate routine
to perform the requested function. Since all kernel calls from outer rings are �rst processed by the kernel
gate, kernel calls are referred to as kernel gate functions. The caller supplies the kernel function code and a
pointer to an argument list contained in the caller's address space.

Entry into the kernel is restricted through the use of the gate. Access is restricted by de�ning a gate segment
descriptor for the kernel (the same is done for TSS). The gate descriptor de�nes a procedure entry point, and
speci�es the privilege level required to enter the procedure. In XTS-300, there is only one true kernel gate.
All kernel gate descriptors point to the same location within the kernel (to a routine that sets up registers
and builds the argument list for the kernel gate processing routine). The kernel code segment is protected
by de�ning the DPL of the kernel segment to be zero and by allowing only read and execute access while
executing in Ring 0. The segment descriptor for the kernel contains this information.

The processing for a gate call is as follows. First, the process is set non-interruptible by the Time Slice
Clock (TSC) Manager. The gate function code is then validated by checking to be sure that the supplied
code is greater than zero and less than or equal to the maximum number of kernel gate functions in the
system (which is currently 55). The address of the routine to be called is obtained through the kernel gate
table that contains, for each gate function de�ned in the kernel, an address, the least privileged ring number
allowed to call the gate function, and the number of bytes in the argument list not including the ring of the
caller argument. The ring of the caller is veri�ed by hardware prior to entering the kernel. However, since
there is only one kernel gate, the DPL for the kernel segment is set to 2. For gates that can only be called
from Ring 1, the ring of the caller is veri�ed again by the kernel gate routine by taking the maximum of the
CPL and the RPL and comparing that to the ring speci�ed in the kernel gate table. The ring of the caller is
obtained by taking the maximum of the CPL and the RPL. The ring of the caller must be less than the ring
number speci�ed in the kernel gate table. The arguments for the called routine are copied from the caller's
stack into a local bu�er. The ring of the caller is appended to the argument list before the call to the gate
is performed.

47
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

The kernel gate routine copies the argument list from the local bu�er into the kernel stack. The kernel gate
does not check the form or the content of the argument list. However, the kernel gate knows the number
and size of each argument that is expected for each kernel function. The kernel gate calculates the length
of the argument list itself. The speci�ed kernel function is then called. Each kernel function validates the
arguments passed to it by validating the ring number in each argument pointer. This prevents malicious use
of argument list pointers (a pointer to a more privileged ring than the caller).

The only value returned from a kernel function is the error code that indicates an error from the function
itself, an error in kernel gate processing, or no error. Prior to returning the error code to the user, a check
is made for any outstanding commands or signals and for TSC expiration.

4.5.3 Segment Management

Proprietary �gure removed

Figure 4.6. Segment Branch Table Entry (SBTE)

Proprietary �gure removed

Figure 4.7. Segment Management Data Structures

Proprietary material removed.

4.5.3.1 The Segment Manager

Proprietary material removed.

4.5.3.2 The ASTE Manager

The Active Segment Table Entry Manager handles all operations on each ASTE. The ASTE Manager
maintains an active segment chain, that includes mapped and previously mapped permanent segments and
a binary tree that includes permanent and temporary shared segments. The ASTE Manager allocates page
tables from the global pool based on the size of the segment being mapped. The main synchronization
routine by which the System Sync process1 traverses the active segment chain is contained in the ASTE
Manager. Finally, the ASTE Manager is responsible for releasing any unmapped segments on a �lesystem
being unmounted. The ASTE Manager's functions are not visible outside the kernel. No kernel gate functions
are supported in this module.

The active segment chain processing supports the System Sync Process in the following manner. When the
last unmap of a segment occurs, its ASTE is moved from its current position on the chain to the tail. As
a result, the least recently used unmapped segments are nearest to the top of the chain and are the �rst

1For more information on the System Sync process, see Section 4.5.3.4.

48
final: 3 August 2000

Final Evaluation Report Wang XTS-300
4.5. SECURITY KERNEL

candidates for removal. Both the ASTE chain and the associated management mechanism are local to the
ASTE Manager.

Previously mapped segments exist primarily as a performance enhancement to keep the number of disk
I/Os to a minimum. They facilitate segment map and unmap operations for segments that are often used.
For a mapped segment, if a branch is modi�ed, a
ag is used to indicate the fact for subsequent system
synchronization activity. Mapped segments are synchronized upon periodic system sync process activation
or by a speci�c request to do so. If the mandatory attributes of a segment are changed, the segment is
written to disk immediately.

Although the number of ASTEs is not actually limited, there is a threshold of the number of ASTEs that
will cause a previously mapped segment to be unlinked from the ASTE chain. This threshold occurs when
the system is close to exhausting memory or the global pool. The idea behind this threshold is to allow more
previously mapped segments when the system is lightly loaded and less when heavily loaded, when memory
loading is the driving performance factor. As long as the threshold is exceeded, each create segment call will
cause the chain to be searched, looking for a segment to
ush. In addition, the last unmap of a permanent
segment will cause the same search.

4.5.3.3 The Lock Manager

The Lock Manager supports UNIX �le locking functions, including: read-only locks, write locks, locking and
unlocking of �le extents (portions of segments), blocking and non-blocking lock requests, reading and writing
of locks, partial unlocking of locked extents, combining existing locked regions with similar lock requests,
deadlock detection, and modi�cation of the current lock type based on the new request type. The Lock
Manager allows a blocking lock request to be broken by signals (IPC messages). The Lock Manager cleans
up locks during segment unmap, process deletion, and segment (�le) deletion operations.

The Lock Manager supports a kernel gate function, callable from Ring 1, to perform locking and unlocking
of segment extents. The rest of the functions in this module are not visible outside the kernel.

To perform a lock request, the calling process must be at the level of the segment and have read and write
access to the segment. The exception to the mandatory access rule is that if the lock request is for Ring 1
and the request is for a read-only lock, then only read access to the segment is required. The calling process
must also have the segment subtype on its subtype list. During an unlock operation, MAC and subtype
access checks are not performed since the caller must be the one who obtained the lock.

When a process unmaps a segment, all the lock entries2 for that process are removed. When a segment is
deleted, all the lock entries are returned to the system. Any processes that are blocked on a lock for that
segment are awakened.

4.5.3.4 The System Sync Process

The System Sync Process is a system daemon responsible for synchronizing modi�ed segment branch entries
and data pages, modi�ed device branch entries (for a discussion of branch entries, see Section 4.5.5.1), and
super pages (see Section 4.5.5.2, for details on super pages) for mounted kernel �le systems. The System

2Lock entries contain the information about a segment, of which a portion may be locked. Lock entries are linked o� the
ASTE for the associated segment.

49
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

Sync Process, which is created during system initialization, runs at an interval speci�ed by a site-con�gurable
parameter, nominally set at two minutes.

During the synchronization process, the SBTE, the continuation blocks, and the associated data pages
for each currently mapped segment with a modi�ed SBTE are written to disk. Only those data pages
that changed are synchronized. The operation continues until all modi�ed permanent segments have been
synchronized. Temporary segments are never synchronized. If a �lesystem has not been mounted for read-
only access, its super page is synchronized while the System Sync Process is active.

4.5.4 Process Management

Process Management is accomplished by four major modules in the kernel. They are: the Process Manager,
the IPC Message Manager, the IPC Message Services, and the Kill Process.

4.5.4.1 The Process Manager

Proprietary �gure removed

Figure 4.8. Process Management Data: PDS and PLDS

Proprietary �gure removed

Figure 4.9. Active Process Table Entry (APTE)

Proprietary material removed.

4.5.4.2 The IPC Message Manager

The IPC Message Manager provides the interprocess communication mechanism. There are four kernel gate
functions supported in this module, all callable from Ring 2 (untrusted software). Two of them are older
gates which were retained for backwards compatibility while the two newer gates were enhanced to allow
larger and variable size IPC messages as well as the ability for Ring 1 (other than the File System Daemon)
to utilize them. There are two gate functions called to send and two gate functions called to receive messages.

An IPC message consists of a message header and text. The message header comprises the ring of the sender
and the unique identi�er of the process. The text of the message is supplied by the caller to the kernel gate
or by an internal kernel routine used to send messages to a process from the kernel.

Messages are sent from one process to another by copying them from the sender to a queue of messages
obtained from the global pool. A process's message is linked on the IPC queue of the APTE for the receiving
process. Normally, each ring has its own separate message queue. However, for Ring 1 processes, Ring 2
messages such as alarms are placed in the Ring 1 (execution domain of the process) queue. This ensures that

50
final: 3 August 2000

Final Evaluation Report Wang XTS-300
4.5. SECURITY KERNEL

all messages normally sent to the OSS domain are readable by Ring 1 processes. Ring 2 software is noti�ed
of queued messages via a bit in the Ring 2 stack which is set by the kernel.

During the message receipt operation, an entry is pulled o� the IPC queue of the current process and the
message portion is copied into the recipient's memory. During process deletion, all of the entries on the IPC
queue for the process are pulled o� and released.

4.5.4.3 The IPC Message Services

The IPC Message Services is responsible for providing the low level inter-process communication mechanism.
The IPC Message Services actually manages the message queue entry's in the OSS and TSS IPC queues of
each process. The queues were discussed above in the Section 4.5.4.2. However, the actual manipulation
of the queues is performed by this layer. This separation has been added to clarify locking and usage of
portions of the IPC Message module.

4.5.4.4 The Kill Process

The Kill Process is one of the kernel processes. It represents an independent thread of control that performs
some of the process deletion functions. During process deletion, the process deletes all of its segments with
the exception of the Task State Segment (TSKSS), the LDT segment, the PDIR, PDS, the page table for
free pages (from the global pool), and the kernel stack. The Kill Process is then called to �nish the job.
The Kill Process also returns the APTE to the global pool. The Kill Process is activated during system
initialization.

4.5.5 Device Management

Device Management is performed by seven major kernel modules: the Device Manager, the File System
Manager, the PCI Manager, the Physical I/O Layer, Device Interface, the I/O Services, and the Interrupt
Manager.

4.5.5.1 The Device Manager

Proprietary material removed.

4.5.5.2 The File System Manager

The File System Manager handles the disk blocks allocated to a particular �lesystem. The disk blocks are
one of three types: data, branch, or continuation. The data blocks contain only segment data; the branch
blocks contain an SBTE for each segment de�ned on the disk or a DBTE for each device de�ned in the
system. Continuation blocks and the contents of an SBTE are discussed in Section 4.5.3, page 48. The
File System Manager performs allocation and deallocation of data blocks based on kernel requests; it also
performs creation, deletion, and read and write operations on branch information.

51
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

None of the File System Manager's functions are callable outside the TCB. The results of several functions
are visible to a user or trusted software, such as mounting and unmounting of a �lesystem, locking of a
�lesystem, and deletion of branch information for segments or devices.

A physical disk can be either a single partition or multiple partition device. Each single partition disk
is made up of a bootstrap loader, a system bootloader, and the �lesystems themselves starting with the
superpage. Each multiple partition disk begins with a Master Boot Record (MRB) containing the Partition
Table, followed by the partitions on the disk. Each partition is then de�ned like a single partition disk with
a bootstrap loader, a system bootloader followed by the �lesystem. Figure 4.10 shows the structure of a
physical disk and of a single �lesystem.

Proprietary �gure removed

Figure 4.10. Disk and File System Structures

If a partition is not bootable (marked active), the areas containing the bootstrap loader and the kernel loader
will be present, but unreferenced. For multi-partition disks, the Master Boot Record contains the Master
Bootloader and the Partition Table. The Master Bootloader contains executable code that examines the
device Partition Table and loads the Bootstrap loader for the partition which is marked active. The Partition
Table consists of a linked list of tables.3

The �rst table resides in the �rst sector of the disk, also called the Master Boot Record (MBR). This table
contains entries for the �rst partitions on the disk, one of which may be an extended partition. Extended
partitions resemble a logical disk in that the �rst sector of each extended partition contains a partition table
with four entries, one of which may be another extended partition. Extended partitions are linked together
in this way to provide for an unlimited number of partitions per disk.

Partitions may contain STOP �le systems or an known collection of data referred to as a USER type.4 In
the latter case, STOP makes no assumptions on the format of the data. The partition can only be accessed
as string of bytes (TRUSTED or USER class), and can never be mounted.

STOP �le systems can contain a variant known as a SWAP �le system. This is similar to the standard STOP
�le system (FFS) except that it is only used to contain temporary segments that do not have a branch or
a directory entry. Since there is no need to keep information across reboots, the information is maintained
slightly di�erently than an FFS �le system.5 Note that a SWAP �le system is never manually mounted by
an operator. Rather it is automatically initialized and mounted during system initialization and cannot be
unmounted.

The �lesystems themselves each contain a super page, branch blocks, and data blocks, including continuation
blocks. The super page contains speci�c information about a �lesystem. The super page includes the
�lesystem version number, the minimum and maximum MAC labels for the �lesystem,6 a pointer to where
the branch blocks begin, a pointer to where the pool of free data blocks begins, and a mounted indicator

3This is identical to the COTS format used by other operating systems on the Intel platform such as DOS, Windows,
Unixware and Linux.

4Although similar in name, this is not the same thing as a USER class device supported by the XTS-300 kernel partition.
The USER partition type is a partition table entry attribute only and is never set by the set device class command. Instead it
is set at �le system initialization via the TRUSTED mkfsys command.

5E.g., disk block free list is not maintained.
6Swap partitions do not have or need MAC label ranges because of the transitory nature of the objects stored|they will

implicitly span the full MAC access range of the boot �le system and will not survive a system reboot

52
final: 3 August 2000

Final Evaluation Report Wang XTS-300
4.5. SECURITY KERNEL

(
ag). The super page becomes part of the Mount Table Entry (MTE) for the �lesystem when it is mounted.
The Mount Table contains information about all currently mounted �lesystems.

The mounted indicator on disk is set when the �lesystem is successfully mounted, and cleared when the
�lesystem is successfully unmounted. The kernel does not allow a mount of a �lesystem in which the
mounted indicator is set. This condition occurs if the system crashes while the �lesystems are mounted. The
operator must perform a check and repair procedure on the disk device before it can be mounted again to
restore �lesystem integrity (see Section 7.4, page 108, for more details).

4.5.5.3 Device Interface

The Device Interface layer contains only the Device Interface Module. The Device Interface module simply
provides a device-independent interface to the speci�c device drivers from higher layers. It manages no data
of its own. The Device Interface layer is positioned above the Physical I/O layer because it calls many of
the routines in that layer. The Device Interface layer is used by several of the higher layers.

4.5.5.4 The Physical I/O Layer

The Physical I/O layer of the kernel includes all of the device drivers that perform actual I/O operations
on devices. The Physical I/O layer contains drivers for the following devices: console terminal,
oppy disk,
pseudo-terminal, parallel (printers), ethernet, SCSI CD-ROM drive, SCSI disk, SCSI tape, SCSI PC card,
SCSI DTCR, and serial devices (terminals and printers). The Physical I/O layer also contains interrupt
processing functions and support routines used by other kernel managers and many of its functions are
supported by the hardware.

No functions are callable from outside the kernel in the Physical I/O layer. Direct access to I/O ports
and memory-mapped I/O addresses is restricted to the kernel by setting IOPL to zero. As a result, I/O
instructions can only be issued from the kernel. The only exception to this is the video memory/registers
which can be made available to an application for direct access. The Kernel will allow access to video
hardware only if the process already has the console device open. The Kernel can take away access by
changing bits in the process' I/O bitmap and by changing the attributes of the segment descriptor used for
the video memory pages. The Kernel will only allow direct access by a single process, even though multiple
processes may have the console device open.

4.5.5.5 The PCI Manager

The PCI Manager contains all routines for querying and setting the con�guration data spaces for PCI buses.
This driver maintains a tree of PCI con�guration entries for each PCI bus and device on the system. This
manager is typically called by the individual device drivers.

The PCI Manager operates on devices that adhere to the PCI standard 2.1. In order to do this, it accesses
the PCI Con�guration Space registers to obtain con�guration information for the appropriate device.

The module maintains a number of lists. The primary list, and the one that will be externally visible is the
list of devices found on the PCI bus(es). This list is just a double linked list from the �rst device found to
the last device found. There is also a linked list of PCI buses. These will be linked both to the parent bus

53
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

as well as the siblings and children buses. Devices are also linked to siblings and to the bus to which they
are attached. These lists will be built during initialization, and then not be changed again. Each device
structure will contain the 16 double words of the standard con�guration header. It addition, the information
about the slot and function numbers of this device are maintained, and a pointer to the bus structure for
the bus to which this device is connected.

4.5.5.6 The I/O Services

The I/O Services provides low-level utility routines to the Physical I/O layer. Placing common logic in this
module prevents the device drivers from containing redundant code.

The I/O Services layer is positioned below the Physical I/O layer because it services many calls from that
layer.

4.5.5.7 The Interrupt Manager

The Interrupt Manager services all interrupts that occur during system operation. The Interrupt Manager
is also part of the Physical I/O layer. The sources of interrupts include: peripheral devices, real-time clocks
and interval timers upon expiration, APIC timers, keyboards, and non-maskable, or unexpected, interrupts.
The Interrupt Manager is entered only via the hardware.

The main data structure associated with interrupts is the Interrupt Descriptor Table (IDT). The IDT
contains interrupt gate descriptors for each possible interrupt that could occur on the system. The descriptors
provide pointers to the GDT that in turn point to the appropriate TSKSS for the process for which the
interrupt is to be processed. The o�set in the interrupt gate descriptor points to the beginning of the
appropriate interrupt handling routine. Each descriptor also contains a DPL �eld. The DPL is set to zero in
each descriptor. That prevents transfer to the interrupt handler via the descriptor from outside the kernel.
The IDT is indexed by an Interrupt Request (IRQ) number that is determined by the physical location of
the device.

4.5.6 Semaphores

The Semaphore layer is the lowest of the four layers which implement Kernel objects. It contains only the
Semaphore Manager. The Semaphore Manager implements semaphores as TCB objects. It manages lists
of semaphores, pending semaphore operations, and semaphore \undo" operations. It is positioned in the
layering scheme as it is because it is used by the Process Manager and contains high-level tasks which may
require any of the other Kernel services, including auditing, and scheduling.

This layer does not actually need to be below the Device and Segment Managers since it does not actually
interact with many of the other Kernel managers.

4.5.7 Memory Management

Memory Management includes handling of physical memory, implementation of the demand paging algo-
rithm, and allocation of memory to the global pool. The �rst two functions consist of the Memory Manager

54
final: 3 August 2000

Final Evaluation Report Wang XTS-300
4.5. SECURITY KERNEL

and the Pageout Daemon. Responsibility for the handling of the global pool is delegated to the Global Pool
Manager.

4.5.7.1 The Memory Manager

Proprietary material removed.

4.5.7.2 The Global Pool Manager

The Global Pool Manager allocates and deallocates blocks of memory from the global pool contained in the
sixth segment of main memory. The global pool is used by the kernel to allocate pages to perform I/O and
to allocate system data structures, such as a page tables, APTEs and ASTEs. Global pool management is
transparent to other rings. There are no kernel gate functions supported by the Global Pool Manager.

During system operation, the Global Pool Manager requests pages of memory from the Memory Manager.
Using the bitmap contained in the �rst page of the global pool segment, the appropriate storage of the desired
size will be found and allocated for the caller's use. In addition, multiple contiguous pages can be found
easily. The global pool keeps a table of bu�er types that are visible externally. These types are mapped into
an internal bu�er type with an associated size. The internal types are based upon powers of two in size from
16 to 4096 bytes in length. Each page is subdivided into sections equal to the size of the table for which
the page was allocated. If no free entry for a table type exists, another page is allocated and subdivided as
described previously. If the request for a new page for the Global Pool Manager cannot be �lled, an error is
returned so the caller can shutdown the system.

The various internal bu�er sizes have a limit on the number of pages that can be allocated and kept for
each bu�er size. During system initialization the Global Pool Manager will compute a threshold for each
internal bu�er size. When a page is allocated beyond this threshold, the free routine will work to free the
extra page. The thresholds are determined by setting aside areas of the global pool segment for particular
tasks. They allow an equal number of bu�ers for each type to be allocated. The limits are used to compute
the thresholds but are not enforced.

Large Buffers

Reserved Pages

Managed Buffers

Figure 4.11. Global Pool Usage

Bu�ers larger than a page in length will always be allocated in a seperate location of the global pool segment
and will be rounded up to the nearest page. The large bu�ers are allocated from the end of the GP segment.

55
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

They can use reserve pages. Large bu�er pages are freed and returned to the Memory Manager when the
bu�ers are freed. The managed bu�ers section will be allocated upon demand and the pages never freed.
When they take pages from the Reserve, the bu�ers will be coalesced and the page will be made available
for other bu�er types when all the bu�ers within that page are freed.

The maximum size of the total global pool (3072 pages) along with the fact that large bu�ers can be returned
to the Memory Manager helps prevent the system from taking away an excessive amount of memory from
the Memory Manager for use by the global pool.

If request for an additional page of memory for the global pool causes the maximum size parameter to be
exceeded, the Global Pool Manager returns a failure indication. The caller will then shut the system down
with a useful error message.

4.5.8 Scheduling

Scheduling in STOP 5.2.E is done by the Scheduler Processes and the Scheduler Functions that support
those processes. Each scheduler process executes within its own address space and is responsible for the
dispatching of processes. The Scheduler Functions provide the interfaces for signal and command processing
and process execution control. The Scheduler Functions, as part of the kernel, execute within the address
space of all processes.

4.5.8.1 Scheduler Process

Proprietary material removed.

4.5.8.2 Scheduler Functions

The Scheduler Functions contain those routines which execute within the process address space that per-
form operations related to scheduling. The Scheduler Functions provide the signal, command, preemption
processing interface, and process execution control interface. There are no gates supported by the Scheduler
Functions.

4.5.9 Support Modules

There are a number of miscellaneous modules that support the function of the kernel and other kernel gate
functions. They are described below.

4.5.9.1 The Trap Manager

The Trap Manager handles all operational traps. The Trap Manager can correct the condition that caused
the trap or fault, and resume execution of the process involved, or pass o� the trap to the appropriate
handler. If a hardware or software failure occurs within the kernel, the Trap Manager will cause the system
to shut down. There are no gate functions supported by the Trap Manager.

56
final: 3 August 2000

Final Evaluation Report Wang XTS-300
4.5. SECURITY KERNEL

For the majority of user traps, the associated data is re
ected to the process through the TSS trap interface
for processing. For page faults, the Trap Manager will cause the Memory Manager to be activated to bring
in the missing page. A page fault7 is invisible to a process.

Traps are pushed onto the kernel stack. The trap context is placed into a kernel stack frame. The trap
procedure is treated as a call and executes in the kernel. When the trap processing is complete, the process
will resume execution at the location and in the ring of execution speci�ed by the values in the kernel stack
frame. If the trap occurred outside the kernel, or further processing in TSS is required, the system resumes
execution in TSS by copying the address of the Ring 1 trap handler into the stack frame by which the kernel
was entered.

In general, whenever a trap or fault occurs while they are being processed, the system will shut down. There
are conditions, however, in which recovery from such conditions is possible (as in the case of page faults).

4.5.9.2 The Audit Process

The Audit Process and the Audit Functions together provide the capability to generate a record of security-
related events (the entire audit mechanism is explained in Section 6.6, page 95). The Audit Process serves
as the kernel interface to the File System Daemon Process running in the TSS Domain. Audit information is
passed to the Audit Process from the Audit Functions module. The Audit Process outputs the information
into segments on the �lesystem from which the system was booted. The names of the audit segments are
passed to the File System Daemon Process for audit �les to be produced. The Audit Process is activated
during system initialization.

4.5.9.3 Audit Functions

The Audit Functions manage the audit queue and service all kernel requests to generate audit information.
The Audit Functions support kernel gate functions, callable from trusted software, to perform auditing of
events and to change the audit segment. The audit queue is a linked list of audit frames that contain the
link to the next frame, the number of bytes in the frame, the audit data, and a new segment
ag. After
an audit frame has been �lled and placed on the tail of the queue, the Audit Process is awakened to copy
the data to the current audit segment. When the copy operation is done, the audit frame is returned to the
global pool. Each frame is one page in length. There is a limit of nine audit frames on the queue. When the
limit is reached, the audit semaphore is set to prevent additional processes from entering the kernel.

The Audit Functions keep track of the length of the audit segment on disk. If it has been determined that the
audit segment is full, a new segment
ag is set within the �rst data frame to be copied to the new segment.
The Audit Process checks this
ag and if it is set, unmaps the current segment and creates a new audit
segment. The name of the new segment is sent via an IPC message to the File System Daemon Process.

4.5.9.4 Metering Management

The Meter Manager provides support for collecting and reporting system performance information. The
Meter Manager provides one kernel gate used to report the information that has been collected to a process

7Except for page protection traps.

57
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

running at operator or administrator integrity level. The gate can also be called to enable certain types of
data to be collected. Metering is o� by default and cannot be enabled in an evaluated con�guration.

The types of data collected include:
oppy and SCSI disk I/O times, kernel and TSS execution times,
scheduling process execution times, and other I/O data from the File System Manager, the Memory Manager,
and the Segment Manager (e.g., branch block reads and writes). Metering is used for system tuning purposes
and also as an aid to calculating covert channel capacities.

4.5.9.5 The Advanced Programmable Interrupt Controller (APIC) Manager

The APIC Manager contains the low level routines necessary to: initialize the APIC, start and maintain the
APIC timer, send and receive inter-processor interrupts (IPIs), and to boot the application processor. Since
the APIC timer exists on a per-CPU basis, these routines are used by the Memory Manager and Scheduler
Functions in support of multi-processor operation.

4.5.9.6 The Programmable Interval Timer (PIT) Manager

The PIT Manager provides the interface for obtaining the current value of the timer. The information
returned is used as a pseudo-random number for uid generation. The PIT Manager contains a routine to
return the time in seconds since 1970. The PIT Manager also services timer interrupts.

4.5.9.7 The Real Time Clock (RTC) Manager

The RTC Manager manages the real time clock. The RTC Manager provides all timer-related services for
use by other kernel modules including event handling and covert channel capacity reduction.

The RTC is used by processes to cause an event to happen after a speci�ed period of time. Processes can
be awakened or can receive an IPC message for an alarm when the timer expires (established through the
execution of a kernel gate). Processes can be suspended, to be awakened later by a user request or by the
kernel, if it is determined that a delay is necessary to reduce covert channel capacity. A user request to
suspend is performed via a kernel gate which is callable from untrusted software running in Ring 2.

The queue of timer entries is a linked list ordered by the time in which the entries will expire. The �rst
entry contains the time remaining for the �rst entry. Each entry following the �rst contains an increment
from the immediately preceding entry. The increment indicates the remaining expiration time relative to
the preceding entry. The main purpose of this mechanism is to avoid updating every timer entry upon each
clock tick.

4.5.9.8 The Bitmap Services

The Bitmap Services de�ne an abstract bitmap management entity as well as routines to implement high-
level operations on bitmaps. These services are generic so they can be used by any Kernel module. The
data manipulated by these services must be declared by the caller of these services. These services are
self-contained so they are placed in the Service Layer. Currently, these services are used primarily by the
File System Manager and the Global Pool Manager.

58
final: 3 August 2000

Final Evaluation Report Wang XTS-300
4.5. SECURITY KERNEL

4.5.9.9 The Connection List Manager

The Connection List Manager provides functions for managing segment and device sharing. The Connection
List Manager controls the addition and deletion of CLEs. There are no kernel gates supported by the
Connection List Manager.

The connection list is examined by kernel modules to locate process information for a particular segment or
device. Terminal type (e.g., console, serial, and pseudo-terminal) device drivers use the connection list to
manage lists of processes waiting for a particular event to occur on the device.

4.5.9.10 Service Functions

The Service Functions module contains the utility functions common to the other kernel modules; there
are no gate functions supported by the Service Functions. The Service Functions include the routines that
perform the following operations: check (both MAC and DAC) to determine the caller's ability to access an
object in the speci�ed mode, manipulation of semaphores and locks, enabling and disabling of interrupts, and
the copying of a data block between an outer and inner ring which includes the validation of a caller-supplied
outer ring pointer.

4.5.9.11 Shutdown

Shutdown is the operation by which the system is halted and left in a state such that the system startup
process can safely resume operations. The operator can initiate the Shutdown process via Trusted Software,
or system shutdown may be invoked by a hardware or software failure encountered in TCB processing. The
shutdown kernel gate functions are callable only from trusted software.

During shutdown processing, all the attached terminals are disabled. All non-kernel processes, with the
exception of Shutdown itself, are suspended. The operator is prompted as to whether or not a dump tape
is to be made. Delete signals are sent to user processes. User processes that are blocked are awakened to
perform local termination functions. After the user processes have terminated, the devices and segments
allocated to Shutdown are returned to the system. Audit collection is terminated and any existing audit
frames are written to the audit segment. The File System Daemon Process is deleted after it has completed
any audit segment create operations. Modi�ed data pages, segment branch, and device branch entries are
synchronized to disk. Finally, each mounted �lesystem is unmounted.

While an orderly shutdown is in progress, all locks held by other processes are honored. That is, the integrity
of the �lesystem will be held, if possible. However, other internal conditions could result in an immediate
system shutdown. Conditions that may cause a \hard" shutdown include an unrecoverable I/O error, an
attempt to halt a process that holds a spin lock (the process is in the attempt to update a locked resource
while shutdown occurs), a call to shut down the system from a kernel process, a second attempt to halt the
system from the process that originally issued the shutdown call, and the original calling process executing
at signal level, that indicates the process is trying to delete itself and is unable to do so, or that it will never
get to the delete signal to clear its segments from the system.

If an error occurs during shutdown processing, the system is halted and no dump is taken. The mounted
�lesystems are then left in an unknown state. A check and repair utility must be run on the disks before
they can be mounted again. For more details concerning system recovery, see Section 7.4, page 108.

59
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

4.5.9.12 The Trace Functions

The Trace Functions provide a mechanism to track Kernel activity. These functions are debug in nature and
can be retrieved in two situations: the information is displayed on the system console when the system cannot
shut down properly or the system operator dumps the system manually (which is a form of shutdown).

The Trace Functions use a circular array of trace entries for a trace bu�er. The trace bu�er and associated
state variables are only referenced or manipulated within the Trace Functions.

4.6 TCB System Services (TSS)

The TCB System Services occupy the TSS Domain (Ring 1). In contrast to the kernel, most TSS data
structures8 are maintained in process-local memory. The primary functions of TSS are to create and load
both trusted and untrusted programs, to provide I/O services to Ring 2 software, and to convert the
at
kernel �le system consisting of segments into a hierarchical �le system consisting of �les and directories. The
only access control enforcement provided by TSS is discretionary access control to �le system objects and
segments. TSS is organized into several layers, with functions in the upper layers relying on those in the
lower layers. A diagram of the layered organization of TSS is shown in Figure 4.12 (page 82). With the
exception of the File System (FS) Daemon and the TCP/IP Daemon, which are both independent processes,
TSS executes as part of both trusted and untrusted processes.

4.6.1 Process Management

Proprietary material removed.

4.6.1.1 Program Loader

Proprietary material removed.

4.6.1.2 Kill Manager

The kill handler is noti�ed of all soft kill requests by the kernel. It initiates all necessary TSS cleanup for
the process, and noti�es the OSS domain of the kill request if that domain has de�ned a kill handler. To
transfer control to the OSS domain, it builds a call frame to place the OSS domain's kill handler address
into the return location so that when the TSS kill handler exits, the OSS kill handler will be invoked.

4.6.2 File System

The �le system is supported by three layers: FS Daemon, File System, and FS Services. The �le system
provides the fundamental services needed to support a UNIX-based �le system for the OSS domain. TSS

8The data structures used by TCP/IP in shared memory are exceptions.

60
final: 3 August 2000

Final Evaluation Report Wang XTS-300
4.6. TCB SYSTEM SERVICES (TSS)

�lesystems are supported only on mounted or trusted-class, not user-class, devices. TSS provides a hierar-
chical �le system structure consisting of directories, �les, named pipes, and device special �les. Although
it provides no mandatory access control enforcement,9 it does provide discretionary access control for �le
system entities using the conventional owner/group/other permissions, augmented by an access control list.
This section �rst describes the �le system structure, and then describes each of the layers.

4.6.3 File System Structure

Proprietary material removed.

4.6.4 File System Layers

Proprietary material removed.

4.6.5 Segment Manager

Proprietary material removed.

4.6.6 Network

Proprietary material removed.

4.6.7 Network Layers

The network is implemented as three layers in TSS. They are Socket Manager, TCP/IP daemon and Socket
Services.

4.6.7.1 Socket Manager

Proprietary material removed.

4.6.7.2 TCP/IP Daemon

Proprietary material removed.

9MAC policy enforcement is provided by the kernel.

61
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

4.6.7.3 Socket Services

The Socket Services layer provides various low-level functions which are needed by both the Socket Manager
and TCP/IP Daemon code. This code is largely derived from BSD [36] Unix but like the previous network
layers, it has been analyzed and documented so that it could be included in the TCB.

4.6.8 Network Component Communication

Proprietary material removed.

4.6.9 Input/Output

All device input and output is managed by TSS, except for that required to support the kernel's segments.
TSS provides callable functions to open and close user devices, and to perform both data transfer and control
operations on user devices. TSS also veri�es that the device number to which I/O is to be performed is valid.

The support for I/O occurs in several layers in TSS: Entry (Interrupt Manager), I/O Manager, Device
Driver, and I/O Services. The I/O Manager handles all TSS gates relating to the management of user
devices. It processes user device interrupts and manages I/O bu�ers. It converts its requests into calls to the
appropriate speci�c device driver; each of these drivers can support the operations on a single TSS device
type.10 The device drivers in turn call the kernel to perform the speci�ed physical I/O operation.11

4.7 Trusted Software

Trusted Software executes in the OSS domain; it is invoked by the TSS software or by the user. The user
invokes the software by using the SAK, which is implemented as <BREAK> on the keyboard. If the terminal
is not currently logged in, the TCB requests the user to login. If the terminal is logged in, the TCB queries
the user for a command to execute. Currently executing untrusted software in the OSS and the user domains
no longer has access to the terminal; neither does currently executing trusted software in the OSS domain.
Trusted software is written to abort upon detection of the terminal loss. If a trusted command was being
executed, it is terminated prior to the server prompt.

When the SAK is detected by the serial controller, the line is disabled from further I/O. The enabling of the
line requires a privileged operation and is carried out by the Secure Server.

4.7.1 Trusted Processes

Proprietary material removed.

10A TSS device type can handle multiple devices. An example of this is the TSS disk type which can handle disks and
CD-ROMS.

11Sockets are an exception since they do not rely on the kernel for lower level processing.

62
final: 3 August 2000

Final Evaluation Report Wang XTS-300
4.7. TRUSTED SOFTWARE

Proprietary table removed

Table 4.1. Trusted Processes

4.7.1.1 Secure Startup

Proprietary material removed.

4.7.1.2 Secure Initiator

The Secure Initiator is responsible for creating the Secure Server processes as necessary and for managing
the pool of free Secure Server processes. It receives a message from the kernel whenever the SAK is struck at
a terminal that is not mapped by a process that has the TERMINAL LOCK privilege (e.g., Secure Server).
If the key is from the Console, the Secure Initiator sends the message to the Console Server. The Secure
Initiator assigns a Secure Server process from the free pool, and forwards the SAK to it. If the Secure Server
free pool is empty, a new Secure Server is created. The Secure Initiator also does the same processing for a
\hangup" message received from the kernel.

After the processing is completed by a Secure Server, it noti�es the Secure Initiator. If the free pool of
servers is not full, the Secure Initiator adds the Server to the free pool; otherwise, it asks the Server to kill
itself. The Secure Initiator executes at the maximum MAC label and has no privileges.

4.7.1.3 Secure Server

Proprietary material removed.

4.7.1.4 Console Server

Proprietary material removed.

4.7.1.5 Message Daemon

Proprietary material removed.

4.7.1.6 Printer Daemon

The Printer Daemon processes all the print requests for a system printer. There is one Printer Daemon
process for each of the system printers.

Each process runs at the maximum MAC label. The Printer Daemon process uses the following privileges:

63
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

SET OWNER GROUP to change the owner and group of the Print Daemon
to that of the print requestor

SECURITY STAR PROPERTY EXEMPT to delete lower sensitivity spool �les and to map lower
sensitivity printers

SIMPLE INTEGRITY EXEMPT to read lower integrity spool �les, to map lower in-
tegrity printers, and to receive messages from the
lower integrity Message Daemon

DISCRETIONARY ACCESS EXEMPT to bypass �le subtype checking for trusted databases.

4.7.2 Trusted Databases

Proprietary table removed

Table 4.2. Trusted Databases

Proprietary material removed.

4.7.3 Trusted Commands

This section describes the commands a user can enter after the SAK is pressed. The Secure Server processes
the command if it exists in the Secure Server's internal command list. If the command is not in the internal
command list, the Secure Server searches the Trusted Program Directory and brings in the trusted program
corresponding to the command. For the list of privileges used by the Secure Server, see Section 4.7.1.3. To
execute a command, the user must possess the appropriate capabilities; for the list of user capabilities, see
Section 6.3.3, page 90.

4.7.3.1 User Trusted Commands

This section describes the commands available to all users. The commands allow a user to manipulate the
MAC and DAC attributes for the current session, and to create, attach, and destroy process families at
di�erent MAC labels. Table 4.3 provides a list of the commands and required capabilities. The commands
are executed either by the Secure Server or by a program at the user's MAC label. The privileges available
to the executing programs are also listed in the table. For the list of program privileges, see Section 6.3.4,
page 92.

Proprietary table removed

Table 4.3. User Trusted Commands

64
final: 3 August 2000

Final Evaluation Report Wang XTS-300
4.7. TRUSTED SOFTWARE

4.7.3.1.1 Change Command Processor (ccp)

The ccp command allows a user to change his or her command processor. The user must possess the RUN
ALLOWED capability to use this command. The Secure Server processes this command.

4.7.3.1.2 Change Default Level (cdl)

The cdl command allows a user to change the default MAC label following login. The user must possess the
SET LEVEL capability to use this command. The Secure Server processes this command.

4.7.3.1.3 Change Home Directory (chd)

The chd command is used to specify a new home directory. The Secure Server processes this command.

4.7.3.1.4 Change User Password (cup)

The cup command allows a user or the system administrator to change the user's password. The Secure Server
processes this command. The user (including the administrator) must possess CUP ALLOWED capability to
use this command.

4.7.3.1.5 Disconnect

The disconnect command is used to disconnect a process family from a terminal. The Secure Server processes
this command. The user must possess DISCONNECT ALLOWED capability to use this command. Upon
disconnect, the user has no access to the processes in the family. If the processes are still active after the
user logs o�, they continue to run. Since the user has no access to the process family, commands such as
session, kill, ikill, and reattach cannot be used for a disconnected process family. Only the proc edit command
can be used to deal with a disconnected process family.

4.7.3.1.6 Display Free Blocks (df)

The df command reports the number of free disk blocks available on each mounted �le system. The command
displays information on mounted �le systems for which the maximum MAC label is less than or equal to the
user's current MAC label. The program has the following privileges:

SIMPLE INTEGRITY EXEMPT to allow high integrity processeses such as operators and admin-
istrators the ability to access information on �le systems whose
maximum MAC label contains a lower integrity.

4.7.3.1.7 File System Manager (fsm)

The fsm command allows a user or an administrator to delete or change the access attributes of a �le or
a directory, or to create, copy, rename, or display a �le or a directory. The Secure Server invokes the fsm

65
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

program to process this command. The program executes at the user's MAC label. The program has the
following privileges:

DISCRETIONARY ACCESS EXEMPT to bypass the DAC check for the administrator and
to bypass �le subtype checking for trusted databases

INTEGRITY STAR PROPERTY EXEMPT to generate audit records and to delete an entry
whose integrity is lower than that of the parent di-
rectory

SET DISCRETIONARY ACCESS to allow the administrator to change the ACL on an
object

SET LEVEL to change the �le MAC label

SET OWNER GROUP to allow the administrator to change the �le owner
and group

SET SUBTYPE ACCESS to allow the administrator to change the �le subtype

SIMPLE INTEGRITY EXEMPT to allow the operator and administrator to examine
and copy lower integrity �les

SIMPLE SECURITY EXEMPT to allow examining �le system entries at higher sen-
sitivity (e.g., user authentication database)

SECURITY STAR PROPERTY EXEMPT to delete an entry whose sensitivity label is higher
than that of the parent directory.

For a request to change the security attributes of a �le, the fsm program ensures that the user is the owner
of the �le system entry or is running at the administrator integrity level. The user must be at the same
sensitivity label and the same integrity label as the �le system entry or at the �le system entry's sensitivity
label and administrator integrity level. For a request to change the MAC label, the kernel ensures that
the MAC label is within the range allowed for the �le system on which the �le system entry resides. The
requested MAC label should dominate the parent directory MAC label. If the entry is a directory, the new
MAC label must be equal to or less than the MAC label of any �les or directories in it.

The fsm program further ensures that only the users with the UPGRADE ALLOWED capability can upgrade
an object; similarly, only the users with the DOWNGRADE ALLOWED capability can downgrade an object.
In addition, the user without the VIEWING OPTIONAL capability must display the �le system entry before
downgrading it.

Using the fsm program, operators and administrators have the ability to override the integrity policy of the
system. That is to allow operators and administrators to examine and to copy low integrity programs (e.g.,
to install low integrity programs in the /trusted directory).

If the new attributes have either the setuid
ag12 or the setgid
ag set, the following conditions will override
these
ags: if the e�ective group ID of the user is di�erent from the new group ID in the new ACL, the
setgid
ag will be reset; if the user or the group ownership of the �le is being changed, the setuid and the
setgid
ags will be reset; and if the new access modes contain any \write" permissions, the setuid and the
setgid
ags will be reset.

12Here setuid and setgid have the same meaning as in UNIX.

66
final: 3 August 2000

Final Evaluation Report Wang XTS-300
4.7. TRUSTED SOFTWARE

4.7.3.1.8 Immediate Kill (ikill)

The ikill command allows a user to immediately terminate all the processes in a process family. The Secure
Server processes this command. The user must possess the KILL ALLOWED capability to use this command.

4.7.3.1.9 Kill

The kill command allows a user to initiate the termination of all processes in a speci�ed process family by
notifying the processes to terminate themselves. The Secure Server processes this command. The user must
possess the KILL ALLOWED capability to use this command.

4.7.3.1.10 Logout

The logout command allows a user to log out of the system. All active processes associated with the user
terminal are killed, except for the processes that are disconnected from the terminal. The Secure Server
processes this command. The Secure Server releases the terminal and noti�es the Secure Initiator to put the
Secure Server in the free pool.

4.7.3.1.11 Reattach

The reattach command allows a user to attach the terminal to a detached process family. The Secure Server
processes this request and ensures that the user's MAC label and group are the same as those of the process
family. If they are not the same, the Secure Server attempts to change the user's MAC level and group to
match those of the process family. However, it will do this only after verifying that the proposed level is still
within the clearance of the user, the user currently possesses the SL ALLOWED capability, and the proposed
group has this user as a valid member. The Secure Server also releases the terminal to the process family
and noti�es the Secure Initiator to put the Secure Server on the free pool.

4.7.3.1.12 Run

The run command allows a user to initiate execution of a command processor from the terminal. The Secure
Server processes this command and makes sure that the user's integrity level is below the OSS integrity level.
The Secure Server also ensures that the user has the RUN ALLOWED capability. The Secure Server assigns
the terminal a new subtype, releases the terminal to the new process, and noti�es the Secure Initiator to
put the Secure Server on the free pool.

4.7.3.1.13 Session

The session command allows a user to display the status of the current session on the terminal. The Secure
Server processes this request by displaying the user name, group name, terminal major and minor number,
MAC label, and the process family information.

67
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

4.7.3.1.14 Set Group (sg)

The sg command allows a user to set the group ID for the current terminal session. The Secure Server
processes this request and ensures that the user has the SG ALLOWED capability.

4.7.3.1.15 Set Level (sl)

The sl command allows a user to set the MAC label of the current terminal session. The Secure Server
processes this request and ensures that the user has the SL ALLOWED capability. The Secure Server also
ensures that the new MAC label is dominated by the user's maximum MAC label. The kernel ensures that
the new MAC label is within the terminal's minimum and maximum MAC labels.

4.7.3.1.16 System

The system command allows a user to display the system status on the terminal. The Secure Server processes
this command. The status includes current date and time, boot device number, boot �le system name, system
release identi�er, and site identi�er.

4.7.3.2 Operator Trusted Commands

This section describes the additional commands available to the user with the integrity level of operator
or higher. These users can also execute all the commands described in the previous section, except for the
run command. The operator trusted commands are executed either by the Secure Server or by a program
at the user's MAC label, except for the startup command. The Secure Server invokes the startup program
at the maximum MAC label. All of these commands require the user's integrity level to be operator or
higher. This requirement is enforced either by the Secure Server or by the Trusted Loader. In addition,
the audit and pq edit commands require the user to be at the maximum sensitivity label (to be able to
read maximum sensitivity �les: audit �les and the prq, respectively). Only two commands require a user
capability (SHUTDOWN ALLOWED is required for the dump and the shutdown commands). Table 4.4 and
Table 4.5 provide a list of the operator trusted commands and the maximum privileges available to the
executing programs.

Proprietary table removed

Table 4.4. Operator Trusted Commands

Proprietary table removed

Table 4.5. Operator Trusted Commands

68
final: 3 August 2000

Final Evaluation Report Wang XTS-300
4.7. TRUSTED SOFTWARE

4.7.3.2.1 Audit

The audit command is used to switch the audit �les, to select and to display portions of an audit �le,
or to remove an audit �le. The audit �les are at the maximum sensitivity label and the administrator
integrity level. The audit program is invoked by the Secure Server to process this command. The audit
program restricts the use of this command to the users with maximum sensitivity label and operator or
higher integrity level. The program further limits the use of the \remove" and \display" options within the
command to the users with the administrator integrity level. The audit program has the following privileges:

SIMPLE INTEGRITY EXEMPT to allow an administrator to read the audit �les

DISCRETIONARY ACCESS EXEMPT to bypass checking of �le subtype for audit �les.

4.7.3.2.2 Check

The check command is used by the operator to check and repair a kernel
at �le system. The Secure Server
invokes the check program to process the command. The program examines the �le system to determine
that all storage areas are accounted for and that all allocated areas are mutually exclusive. The allocated
areas include the used data blocks, the free blocks list, and the defective blocks list. The program can also
clear segment branch entries upon user request. The program sets the \checked"
ag (see Section 7.4, page
108).

The program executes at the user's MAC label and requires no privileges. The program ensures that the
user is at or above the maximum sensitivity label of the �lesystem. The program also ensures that the device
on which the �lesystem resides is of the TRUSTED class. The kernel ensures that the user is at the same
MAC label as the logical device.

4.7.3.2.3 Dump

The dump command allows an operator to dump the memory to a physical device and to initiate system
shutdown (see Section 4.7.3.2.12, page 72). The Secure Server ensures that the user's integrity level is
operator or higher, and the user has the SHUTDOWN ALLOWED capability. The data is output to the
physical device without any MAC checks on the device and without any MAC labels on the output.

4.7.3.2.4 Frestore

The frestore command allows an operator to selectively restore �le system objects from a tape to disk. The
Secure Server invokes the frestore program to process this request. The program executes at the user's MAC
label and has the following privileges:

SIMPLE INTEGRITY EXEMPT to read directories with lower integrity labels

SECURITY STAR PROPERTY EXEMPT to write directories with lower sensitivity labels

SET OWNER GROUP to change the owner and group of objects being re-
stored

69
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

DISCRETIONARY ACCESS EXEMPT to write directories regardless of their discretionary
access controls

SET LEVEL to modify the object's MAC label

SET SUBTYPE ACCESS to modify the object's subtype.

The program ensures that the class of the source device is USER and the each object to be restored either
already exists or can be created on the destination �le system.13 The kernel ensures that user's sensitivity
label and integrity label dominate those of the �le system objects. This is especially important to the
enforcement of role separation. A user at operator integrity cannot restore a �le stored at administrator
integrity. The kernel also ensures that the user's MAC label is the same as that of the source device.

4.7.3.2.5 Fsave

The fsave command is used by an operator to selectively save �le system objects onto a tape from disk. The
Secure Server invokes the fsave program to process this command. The program executes at the user's MAC
label and has the following privileges:

SIMPLE INTEGRITY EXEMPT to read objects with lower integrity labels

DISCRETIONARY ACCESS EXEMPT to read objects regardless of their discretionary access
controls

SECURITY STAR PROPERTY EXEMPT to update access times of directories that have lower
sensitivity labels

SET OWNER GROUP to maintain the labels of lower sensitivity objects
when updating the access times of objects.

The program ensures that the source pathname exists and the class of the destination device is USER. The
kernel also ensures that the user's sensitivity label and integrity label dominate those of the �le system
objects. The kernel ensures that the user's MAC label is the same as that of the target device.

4.7.3.2.6 File System Check (fscheck)

The fscheck command allows an operator to check and repair the hierarchical �le system. The Secure Server
invokes the fscheck program to process this command. The program ensures that all links in the �le system
are valid, all segments are accounted for and each segment is in exactly one �le system object, and that all
segments are of proper size. It removes all directory entries to nonexistent �le system objects, removes all
upward links to nonexistent parent directories, places all unreferenced �le system objects in the /lost+found
directory, removes all unreferenced empty �les that cannot be put in the /lost+found directory, o�ers to
remove all unreferenced non-empty �les that cannot be put in the /lost+found directory, removes all data
segments with no �le control areas, repairs all �le size errors, and repairs �le control areas that reference
nonexistent data segments. It also deletes unreferenced device special �les, FIFOs, and empty directories.

13If an incompatible object already exists, frestore will not replace it.

70
final: 3 August 2000

Final Evaluation Report Wang XTS-300
4.7. TRUSTED SOFTWARE

The program runs only if the \checked"
ag is set (i.e., the check program has been run). The program
clears the \mounted" and \checked"
ags (see Section 7.4, page 108) to allow the mounting of the �lesystem.

The program executes at the user's MAC label and requires no privileges. The MAC requirements are the
same as those previously described for the check command. The program ensures that the device class is
TRUSTED.

4.7.3.2.7 Make File System (mkfsys)

The mkfsys command is used by an operator to initialize a hierarchical �le system.14 The Secure Server
invokes the mkfsys program to process this command. For FFS partitions, the program creates a root
directory for the �lesystem at the minimum level of the �lesystem with the owner and the group IDs of the
user. The remaining data blocks are placed on the free blocks list.

The program executes at the user's MAC label and requires no privileges. The program ensures that the
logical device containing the �le system is of the TRUSTED class. The program ensures that the user is at
or above the maximum sensitivity label of the �lesystem. The kernel ensures that the user is at the same
MAC label as the device on which the �lesystem is being created.

4.7.3.2.8 Print Queue Editor (pq edit)

The pq edit command allows an operator to edit and display the print queue. The Secure Server invokes
the pq edit program to process this command. The program executes at the user's MAC label and has the
following privileges:

SIMPLE INTEGRITY EXEMPT to examine the �le or directory of lower integrity to
obtain the print �le name

DISCRETIONARY ACCESS EXEMPT to examine the requestor's �les and directories and
to bypass �le subtype check for trusted databases.

The kernel ensures that the user is at the maximum sensitivity label.

4.7.3.2.9 Mount

The mount command allows an operator to mount a �lesystem. The Secure Server invokes the mount program
to process this command. The program executes at the user's MAC label and has the following privileges:

INTEGRITY STAR PROPERTY EXEMPT to mount a �lesystem whose maximum integrity level
is higher than that of the user

SECURITY STAR PROPERTY EXEMPT to mount a �lesystem whose minimum sensitivity
label is lower than that of the user

14Although this is the main purpose of mkfsys, it will also initialize or clear the �le system identi�er for all partition types
as appropriate.

71
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

SIMPLE INTEGRITY EXEMPT to mount a �lesystem whose maximum integrity la-
bel is lower than that of the user.

The kernel imposes the following constraints: The class of the device containing the �le system must be
TRUSTED. The user's MAC label must be equal or above that of the device and equal to or above the
root of the �lesystem and the user's integrity must be operator or above. The �lesystem minimum and
maximum MAC labels must be bounded by the de�ned system minimum and maximum MAC labels. The
mount program ensures that the �lesystem has an entry in the File System Name Table.

4.7.3.2.10 Set Device Access (sda)

The sda command allows an operator to change the MAC label and ACL of devices, except for the terminals
and line printers. The Secure Server invokes the sda program to process this request. The program executes
at the user's MAC label and has the following privileges:

INTEGRITY STAR PROPERTY EXEMPT to set the attributes of higher integrity devices

SET LEVEL to set the MAC label of a device

SET DISCRETIONARY ACCESS to set the ACL of a device

SIMPLE INTEGRITY EXEMPT to obtain the attributes of lower integrity devices

SECURITY STAR PROPERTY EXEMPT to set the attributes of lower sensitivity devices.

The sda command ensures that the user's sensitivity label dominates that of the device.

4.7.3.2.11 Set Device Class (sdc)

The sdc command allows an operator to change the class of a disk device to one of the following types:
mounted, trusted, user. The Secure Server invokes the sdc program to process this command. The program
executes at the user's MAC label and requires the following privileges:

SIMPLE INTEGRITY EXEMPT to obtain the device class of a lower integrity device.

SECURITY STAR PROPERTY EXEMPT to look for a STOP �le system identi�er on a lower
sensitivity devices.

INTEGRITY STAR PROPERTY EXEMPT to look for a STOP �le system identi�er on higher
integrity devices

The sdc command ensures that the user's sensitivity label dominates that of the device.

4.7.3.2.12 Shutdown

The shutdown command allows an operator to initiate system shutdown. The Secure Server calls the kernel
gate shutdown to process this command. Before calling the kernel gate, the Secure Server ensures that the
user's integrity level is operator or higher, and the user has the SHUTDOWN ALLOWED capability.

72
final: 3 August 2000

Final Evaluation Report Wang XTS-300
4.7. TRUSTED SOFTWARE

4.7.3.2.13 Set Time (st)

The st command allows an operator to set the system clock. The Secure Server processes this command and
ensures that the user's integrity level is operator or higher.

4.7.3.2.14 Start Daemon (start daemon)

The start daemon command allows an operator to activate processes that have been con�gured using the
daemon edit command. The start daemon command executes at the user's MAC label and has the following
privileges:

DISCRETIONARY ACCESS EXEMPT to send a message to an executing daemon process
that has discretionary access permissions on messages
sent to the process

INTEGRITY STAR PROPERTY EXEMPT to open the Daemon Attribute database from an in-
tegrity level below the maximum and to start a higher
integrity daemon process

SET OWNER GROUP to kill a daemon process that has an owner di�erent
from the current user of the command and to start a
daemon process with a di�erent owner and/or group
from that of the current process

SIMPLE INTEGRITY EXEMPT to check for the existence of a daemon, to kill a lower
integrity daemon, and to start a lower integrity dae-
mon

SIMPLE SECURITY EXEMPT to check for the existence of a daemon and to kill a
higher sensitivity daemon

SECURITY STAR PROPERTY EXEMPT to open the Daemon Attribute database from a se-
curity level above the minimum and to start a lower
sensitivity daemon process.

Before invoking the start daemon command, the Secure Server ensures the user's integrity level is operator
or higher.

4.7.3.2.15 Startup

The startup command allows an operator to notify the system to start processing SAKs from other terminals
(i.e., other than the console). The Console Server processes this command by invoking the startup program
only if the \startup"
ag in the Trusted Information Database is set to \false." The
ag is set to \false"
by the Secure Startup process and is set to \true" by the startup program. This mechanism prevents the
TCB from executing multiple startup commands. The program enables the terminal lines, so that the SAK
key processing is performed when the user depresses it, putting the system in the multi-user mode. Since
the startup program executes with the TERMINAL LOCK privilege, the SAK messages during its execution

73
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

are sent to it by the kernel. The program sends these messages to the Secure Initiator for processing. The
startup program executes at the maximum MAC label and has the following privileges:

DISCRETIONARY ACCESS EXEMPT to map a device

SET OWNER GROUP to set ownership of the current process

SIMPLE INTEGRITY EXEMPT to map a lower integrity device

SECURITY STAR PROPERTY EXEMPT to map a lower sensitivity device

TERMINAL LOCK to map a locked terminal.

Before invoking the startup program, the Secure Server ensures that the user's integrity level is operator or
higher.

4.7.3.2.16 Stop Daemon (stop daemon)

The stop daemon allows an operator to terminate a daemon process that has been con�gured with the
daemon edit command. The stop daemon command executes at the user's MAC label and has the following
privileges:

DISCRETIONARY ACCESS EXEMPT to send a message to an executing daemon process
that has discretionary access permissions on messages
sent to the process

INTEGRITY STAR PROPERTY EXEMPT to open the Daemon Attribute database from an in-
tegrity level below the maximum and to start a higher
integrity daemon process

SET OWNER GROUP to kill a daemon process that has an owner di�erent
from the current user of the command

SIMPLE INTEGRITY EXEMPT to check for the existence of a daemon and to kill a
lower integrity daemon

SIMPLE SECURITY EXEMPT to check for the existence of a daemon and to kill a
higher sensitivity daemon

SECURITY STAR PROPERTY EXEMPT to open the Daemon Attribute database from a secu-
rity level above the minimum.

Before invoking the stop daemon command, the Secure Server ensures the user's integrity level is operator
or higher.

74
final: 3 August 2000

Final Evaluation Report Wang XTS-300
4.7. TRUSTED SOFTWARE

4.7.3.2.17 Unmount

The unmount command allows a user to unmount a �lesystem. The Secure Server invokes the unmount
program to process this command. The program executes at the user's MAC label and has the following
privileges:

INTEGRITY STAR PROPERTY EXEMPT to unmount a �lesystem whose maximum integrity
level is higher than that of the user

SECURITY STAR PROPERTY EXEMPT to unmount the �lesystem of lower sensitivity

SIMPLE INTEGRITY EXEMPT to unmount the �lesystem of lower integrity.

The kernel imposes the following constraints: The class of device containing the �lesystem must be MOUNT-
ED, i.e., the �lesystem must be mounted. The user's MAC label must equal that of the device and of the
root of the �lesystem. Alternatively, unmount is permitted if the user's sensitivity label is equal to that of
the device and that of the root of the �lesystem, and the user's integrity label is operator or above.

4.7.3.3 Administrator Trusted Commands

This section describes the additional commands available to the user with the integrity level of administrator.
These users can also execute all the commands available to the untrusted users and to the operators, except
for the run command. The administrator trusted commands are executed either by the Secure Server or by a
program at the user's MAC label. All of these commands require the user's integrity level to be administrator.
This requirement is enforced either by the Secure Server or by the Trusted Loader. None of the commands
requires any user capability. Table 4.6 provides a list of the administrator trusted commands, required MAC
labels, and the maximum privileges available to the executing programs.

Proprietary table removed

Table 4.6. Administrator Trusted Commands

4.7.3.3.1 Con�guration Editor (con�g edit)

The con�g edit command allows an administrator to edit the following system con�guration related databases:
con�guration, logical device data, printer information, and terminal con�guration. The Secure Server invokes
the con�g edit program to process this command. The program executes at the user's MAC label and requires
no privileges. The MAC policy dictates that the user is at the minimum sensitivity and the maximum
integrity label. Adding or removing logical devices initiates system shutdown. Changes to the databases
take e�ect upon reboot, except that the changes to a terminal entry in the terminal con�guration database
take e�ect when SAK is hit on that terminal.

75
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

4.7.3.3.2 Cancel Terminal Lockout (ctl)

The ctl command is used by the system administrator to reenable a locked-out terminal. The Secure Server
processes this command and ensures that the user's integrity level is administrator.

4.7.3.3.3 Daemon Attributes Database Editor (daemon edit)

The daemon edit command allows an administrator to read and modify the Daemon Attribute database.
The daemon edit command executes at the user's MAC label and requires no privileges. Before activating
the command, the Secure Server ensures that the user's integrity level is administrator.

4.7.3.3.4 File System Name Table Editor (fsnt edit)

The fsnt edit command allows an administrator to edit the �le system mount entries in the root directory
of the boot �le system. The Secure Server invokes the fsnt edit program to process this command. The
program executes at the user's MAC label and requires no privileges. The MAC policy dictates that the
user be at the minimum sensitivity and maximum integrity label.

4.7.3.3.5 Group Access Database Editor (ga edit)

The ga edit command allows an administrator to edit the Group Access Authentication and Group Access
Information databases. The Secure Server invokes the ga edit program to process this command. The changes
to the database take e�ect at the next login and do not a�ect the current users operating in a modi�ed or
deleted group. The program executes at the user's MAC label and has the following privileges:

SECURITY STAR PROPERTY EXEMPT to update the Group Access Information database

DISCRETIONARY ACCESS EXEMPT to bypass �le subtype checking for trusted databases.

The kernel ensures that the user is at the maximumMAC label since the group access authentication database
is at that label.

4.7.3.3.6 System Parameter Editor (param edit)

The param edit command allows an administrator to edit the Trusted Information and Audit Pro�le data-
bases. The Secure Server invokes the param edit program to process this request. The program executes at
the user's MAC label and has the following privilege:

DISCRETIONARY ACCESS EXEMPT to bypass checking of �le subtype for the audit pro�le
database.

Since the database is at the minimum sensitivity and the maximum integrity MAC label, the MAC policy
requires that the user be at the same MAC label.

76
final: 3 August 2000

Final Evaluation Report Wang XTS-300
4.7. TRUSTED SOFTWARE

4.7.3.3.7 Process Editor (proc edit)

The proc edit command allows an administrator to display and terminate processes in the system. The
Secure Server invokes the proc edit program to process this request. The program executes at the user's
MAC label and has the following privileges:

SET OWNER GROUP to terminate the processes of other users

SIMPLE INTEGRITY EXEMPT to obtain the status of processes with lower integrity
labels

SECURITY STAR PROPERTY EXEMPT to terminate a process with lower sensitivity labels.

4.7.3.3.8 Security Map Editor (sm edit)

The sm edit command allows an administrator to edit the security map database. The Secure Server invokes
the sm edit program to process this command. The program executes at the user's MAC label and requires
no privileges. The kernel ensures that the user is at the minimum sensitivity and the maximum integrity
label. Aliases (e.g., short names) for MAC labels can also be established through the sm edit command.
Each alias must be unique.

4.7.3.3.9 TCP/IP Con�guration Editor (tcp edit)

The tcp edit command permits a system administrator to edit the trusted TCP/IP con�guration database
and the daemon-speci�c databases. Note that for TCP/IP to be operational, con�g edit must be used
to con�gure the associated ETHERNET device and daemon edit must be used to con�gure the associated
TCP/IP daemon. The program executes at the user's MAC label and requires no privileges. Before activating
the command, the Secure Server ensures that the user's integrity level is administrator. The MAC policy
dictates that the user be at the minimum sensitivity and maximum integrity label.

4.7.3.3.10 Trusted Program Directory Editor (tp edit)

The tp edit command allows an administrator to edit the Trusted Program Directory databases (/trusted)
and to modify the security attributes of programs in the /system directory. The administrator can also
use the command to change the privileges and the integrity label of a program. The Secure Server invokes
the tp edit program to process this command. The program executes at the user's MAC label and has the
following privileges:

SET LEVEL to set the mandatory access level of a replacement �le to
the level of the �le being replaced

SET OWNER GROUP to set the ownership and discretionary attributes of a
replacement �le to those of the �le being replaced

SIMPLE INTEGRITY EXEMPT to read lower integrity program �les

77
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

SECURITY STAR PROPERTY EXEMPT to alter the security attributes of programs in the /system
directory.

The MAC policy dictates that the user be at the sensitivity level of the program �le and at the maximum
integrity label. The program does not allow the MODIFY PRIVILEGE privilege to be assigned to any
program. The program allows privileges to only those programs with the integrity level of operator or
higher.

4.7.3.3.11 User Access Database Editor (ua edit)

The ua edit command allows an administrator to modify the User Access Authentication and the User Access
Information databases. The Secure Server invokes the ua edit program to process this command. Removing
a user entry does not a�ect the current session of the user or any objects owned by the user until the SAK
is pressed. When the SAK is processed, the Secure Server will log out the user. When a user's clearance is
lowered or changed to a level incomparable to the current one, the administrator is directed by a procedure
documented in the TFM to delete all of the current user's processes and to delete all of the �les to which the
user no longer has access. The program executes at the user's MAC label and has the following privileges:

SECURITY STAR PROPERTY EXEMPT to update the User Access Information database.

DISCRETIONARY ACCESS EXEMPT to bypass �le subtype checks for the trusted data-
bases.

The MAC policy dictates that the user of this command be at the maximum MAC label.

4.8 Commodity Application System Services (CASS)

CASS provides an environment on the XTS-300 suÆcient to allow the execution of UNIX-based applica-
tions; that is, CASS provides a UNIX-like interface to the user. Additionally, CASS provides extensions
to allow application software to utilize the multilevel secure execution environment. Thus, CASS provides
the necessary services to support both existing UNIX-based software and new applications that are speci�c
to the XTS-300. XTS-300 provides an environment that complies as closely as possible with speci�cations
for UNIX System V, Release 3.0 [3], the American National Standards Institute (ANSI) Standard for the
Programming Language C [2], and the IEEE P1003.1 Portable Operating System Interface for Computer
Services (POSIX) [7] and the Intel Binary Compatibility Standard (BCS) [8] .

To reduce the size of the TCB, the services provided by CASS are not, in general, provided by the TCB.
Whenever possible, the execution environment furnished by CASS is provided by either untrusted services
operating in the OSS Domain, utilizing the more primitive underlying TSS and the Security Kernel, or by
application runtime libraries operating in the Application Domain. Though CASS and Trusted Software
both execute within the OSS Domain, only one of the two will execute during the lifetime of a particular
process. There is never a transfer of control between the two. Within the OSS Domain, only CASS executes
in an untrusted process and only Trusted Software executes in a trusted process.

The untrusted CASS software is included in each process's memory address space to allow most process
creation operations to be simpler and quicker. This means that the hardware does not prevent the OSS

78
final: 3 August 2000

Final Evaluation Report Wang XTS-300
4.8. COMMODITY APPLICATION SYSTEM SERVICES (CASS)

Domain software in a trusted process from transferring control to CASS. CASS software is never needed by
a trusted process and, since it is not trusted, must not be used by a trusted process. OSS Domain software
in a trusted process is trusted and will never use the segment of a process's memory address space that is
reserved for CASS Text (segment 5).

When XTS-300 is executing an untrusted commodity application process, the OSS Domain is outside of
the TCB and contains the CASS software which converts the primitive TCB interface to an application-
usable interface. CASS is responsible for providing I/O services and process control services to commodity
applications. Although untrusted, CASS is considered high-integrity system software. That is, the CASS
layer provides untrusted operating system services to application software.

CASS runs in the OSS Domain. Application programs started by CASS run in the Application Domain at
an integrity level below OSS. Neither CASS nor user application programs can run with privilege.

4.8.1 Invoking CASS

CASS supports 158 main shell commands and 20 internal shell commands.

CASS is entered via the enter cass gate. CASS processes the gate request for function code validation via
the function process cass gate request, obtaining the gate function pointer, and saving the environment
for gates that can be interrupted by signals. A User Domain process calls the gate function via the call

gate function. On return from the gate, the IPC queue is drained and a check is made for signals to be
processed.

CASS can also be invoked by the Secure Server run command which causes CASS to be loaded by TSS load

process. CASS is entered via the cass entry point. This causes the CASS managers to be initialized.
The user information is then extracted from the User Access Information database and a terminal control
process is created. The default command processor is then started.

4.8.2 CASS Environment Components

The CASS environment consists of runtime libraries that operate in the User Domain, and system calls that
execute in the OSS Domain of the XTS-300. These components include the following:

� Runtime libraries to provide UNIX equivalent subroutine calls

� UNIX equivalent system calls

� XTS-300 speci�c system calls.

4.8.2.1 File System Services

The File System Services pass information to TSS which performs the necessary policy enforcement prior
to returning the information to CASS. CASS routines use the hierarchical �le system provided by TSS.
The MAC and DAC policies of the system are always enforced to ensure that CASS is unable to violate the
security policy. CASS is claimed by Wang to be nonmalicious code.

79
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

An application requesting the creation of a �le system object must be at the MAC label of the new object's
parent directory and must possess write permission to the directory as de�ned by its ACL. When a �le
system object is created, its MAC label is identical to the MAC label of the creating process; its access
modes are equal to the logical AND of the requested modes and the ones complement of the umask value
for the application. Access modes are mapped into the ACL by TSS.

4.8.2.2 Input/Output Services

The CASS I/O system services function in the same manner as the respective UNIX system calls. With the
exception of the ioctl system service, which provides an interface that allows processes to control character
devices, I/O system services treat all �le system objects as regular �les.

4.8.2.3 Process Control Services

The Process Control Services provided by CASS perform process initialization and termination operations
on behalf of the application. Additionally, CASS Process Control Services are responsible for IPC Message
Management, Kill Management, Trap Management, and the management of process-related information
obtained from the TSS or Kernel Domains.

4.8.2.4 IPC Message Management

CASS is responsible for the management of all IPC messages directed to the process. It makes the receipt of
all messages transparent, except for those messages to be delivered to the application via signals as speci�ed
by the signal system service.

4.8.2.5 CASS Kill Management

CASS is responsible for handling the deletion of the OSS Domain portion of user processes. Process termi-
nation is accomplished by the kernel for the process environment not handled by CASS. Standard UNIX
kill noti�cation is used to inform the user of the process deletion.

4.8.2.6 CASS Trap Management

CASS is responsible for handling any trap information passed from the TSS Trap Manager to CASS. These
include both external traps and internal traps. External traps are those caused by software executing in the
User Domain and internal traps are those caused by CASS software executing in the OSS Domain.

CASS makes the receipt and handling of internal traps transparent to the User Domain except when the
trap will result in process termination. External traps are made transparent to the untrusted application,
except for those traps to be delivered to the application via signals in the manner speci�ed by the signal
system service.

80
final: 3 August 2000

Final Evaluation Report Wang XTS-300
4.8. COMMODITY APPLICATION SYSTEM SERVICES (CASS)

4.8.3 Interface Requirements

CASS interfaces with the kernel (Ring 0) and TSS (Ring 1) through gates callable from untrusted software.
CASS has no interface to and does not interact in any way with Trusted Software. Untrusted applications
running in Ring 3 must interface with CASS to invoke services provided by the TCB.

81
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

Proprietary �gure removed

Figure 4.12. TCB System Services Layering Diagram

Proprietary �gure removed

Figure 4.13. Overview of the STOP File System

Proprietary �gure removed

Figure 4.14. XTS-300 Network Components

82
final: 3 August 2000

Final Evaluation Report Wang XTS-300

Chapter 5

TCB Protected Resources

The primary purpose of a Trusted Computing Base (TCB) is to mediate the data
ow between, and to
provide protection of, selected entities in a computing system. Entities in a computing system fall into two
classes: active and passive. Active entities are those pieces in a computing system that do things { they
cause information to
ow or change the system state (for example, processes or executing device driver code).
Passive entities are those pieces of a system that logically contain or receive information (for example, �les,
devices, memory segments, etc.). Note that an entity may have both active and passive aspects (for example,
a device).

The active and passive entities that are under the control of the system security policy as enforced by the
TCB are called subjects and objects. Subjects correspond to active entities and objects to passive entities, all
under control of the TCB. The target rating for a system determines the extent to which identi�ed subjects
and objects must be protected by the TCB; at the B3 rating, all identi�ed subjects and objects must be
protected.

The following sections enumerate the subjects and objects of STOP 5.2.E, and discuss their attributes and
life cycles.

5.1 Subjects

STOP 5.2.E supports only one type of subject: a process.1

5.1.1 Subject Attributes

For each subject, in addition to the current ring of execution, the system maintains the following security-
relevant information in the kernel Active Process Table:

� The real user and group identi�ers (IDs). This identi�es the user and group responsible for the subject.

� The e�ective user and group IDs. This identi�es the user and group on whose behalf the subject is
operating. It is the e�ective user and group IDs that are used in the discretionary access checks.

� The clearance of the user on whose behalf the subject is operating.

� The Mandatory Access Control (MAC) label (i.e., sensitivity and integrity labels) of the subject.

� The object subtypes (see Section 6.3.2, page 89) to which the subject has access.

1This de�nition is independent of the domain of execution of the process, which may change during the process's lifetime
(for example, as the process transitions between hardware rings). In STOP 5.2.E, as long as the process is active, it is a subject.

83
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 5. TCB PROTECTED RESOURCES

� The e�ective privileges (see Section 6.3.4, page 92) of the subject.

� The maximum privileges of the subject.

5.1.2 Subject Creation and Destruction

Subjects can only be created by other subjects.2 At the TCB interface, subjects are created via the load

process and fork process TCB System Services (TSS) gates. When load process, is used, the kernel
creates a new subject environment that executes within the TCB until the TSS program loader relinquishes
control. With load process, the new process environment is determined solely by the attributes of the
program �le. If the program being loaded has an integrity level greater than or equal to operator, the
subject continues to execute within the TCB when loading is complete (i.e., it is a \trusted" subject). If
the program is of an integrity level below operator, the subject executes outside the TCB when loading is
completed (i.e., it is an \untrusted" subject). Fork process, the other subject creation path provided to
untrusted code, creates a new subject whose environment is identical to that of the parent subject. In this
case, the new subject executes within the TCB until fork process terminates; execution then resumes at
the same point in parent and child. In all cases, the TCB interface provides trusted subjects with the ability
to create both trusted and untrusted subjects; however, it restricts untrusted subjects to the creation of
untrusted subjects. Details on subject creation and the address space provided to a subject may be found
in Section 4.6.1, page 60. Subjects are destroyed by the release process gate.

5.2 Objects

Proprietary material removed.

2The �rst subject in the system (the system loader) is created by the bootstrap loader.

84
final: 3 August 2000

Final Evaluation Report Wang XTS-300

Chapter 6

TCB Protection Mechanisms

6.1 Introduction

The most important services provided by a Trusted Computer Base (TCB) are its protection mechanisms.
These mechanisms serve to enforce the system policy, provide separation of address spaces, provide protection
of trusted code, and provide accountability for actions taken by subjects; they are implemented using a
combination of hardware and software. The hardware mechanisms have already been discussed; the software
mechanisms concentrate on the enforcement of policy and accountability.

STOP 5.2.E uses a hybrid security policy model that combines the Bell and LaPadula model [4] for sensitivity
and the strict Biba model [5] for integrity into a model wherein the conditions of both models must be met
for access to be granted. One bene�t of this approach is that it allows STOP 5.2.E to easily support least
privilege through the controlled use of integrity levels. This is discussed in more detail on Section 6.2.1.1.

The following sections explore each of the mechanisms provided by software. The discussion will begin
with a look at the mechanisms that enforce the mandatory and discretionary policies of the system. This
will be followed by a discussion of the secondary mechanisms provided (subtypes, capabilities), as well as
a discussion of the privilege mechanism. The focus then turns to accountability, with a discussion on the
identi�cation and authentication mechanism of STOP 5.2.E, followed by a discussion on the special set user
ID protection mechanism and the audit facilities. The last mechanism discussed will be object reuse.

6.2 Policy Enforcement Mechanisms

The primary protection mechanisms in STOP 5.2.E are those that enforce the mandatory and discretionary
access control policies. This section begins with a general discussion of the Mandatory Access Control
(MAC) policy of STOP 5.2.E, and how it is enforced. This is followed by a corresponding discussion for the
Discretionary Access Control (DAC) policy. After that, the speci�c mechanisms used for each of the STOP
5.2.E objects are presented, including discussions on: where policy is enforced for that object in the system,
how a user can change the attributes of the object, and what happens as a result of changes to the attributes
of the object.

Proprietary �gure removed

Figure 6.1. Hardware and Kernel Access Checks

85
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 6. TCB PROTECTION MECHANISMS

Proprietary �gure removed

Figure 6.2. TCB System Services (TSS) Access Checks

6.2.1 Mandatory Access Control Policy

The MAC policy grants access based on labels assigned to subjects and objects. In order for access to be
granted under the MAC policy, the label on the object must satisfy a speci�c relationship, determined by
the type of access needed, to the label of the subject requesting access.

6.2.1.1 MAC Labels

All subjects have associated with them a MAC label that represents the current sensitivity and integrity
labels of the subject. The clearance of the user associated with the subject must always dominate the current
MAC label of the subject. This restriction is enforced by the kernel. Furthermore, all objects unambiguously
have associated with them a label that re
ects the sensitivity and integrity of the information in the object.

MAC labels contain the following information:

� Sensitivity label:

{ Sensitivity level (16 hierarchical)

{ Sensitivity categories (64 nonhierarchical)

� Integrity label:

{ Integrity level (8 hierarchical). STOP 5.2.E has prede�ned meanings for the integrity levels, as
follows:

0{3 User Integrity

4 Operating System Services (OSS) Integrity (i.e., reserved for OSS untrusted application-
s).

5 Operator Integrity

6 (not prede�ned)

7 Administrator Integrity

{ Integrity categories (16 nonhierarchical)

Given two labels (levels and categories), the �rst is considered to \dominate" the second if the hierarchical
level of the �rst is greater than or equal to that of the second, and if the category set of the �rst is a superset
of the second.1

MAC labels are stored internally in the following format:

1This comparison rule holds for both sensitivity and integrity labels; the \duality" of integrity is handled by swapping the
order of comparison (object dominates subject, as opposed to subject dominates object).

86
final: 3 August 2000

Final Evaluation Report Wang XTS-300
6.2. POLICY ENFORCEMENT MECHANISMS

Sensitivity Level An 8-bit byte, constrained to values 0 through 15.

Sensitivity Categories 64 bits, where setting a bit indicates possession of a particular category.

Integrity Level An 8-bit byte, constrained to values 0 through 7.

Integrity Categories 16 bits, where setting a bit indicates possession of a particular category.

6.2.1.2 Policy Rules

The MAC policy enforced using these labels is a combination of the policies de�ned by the Bell and LaPadula
model [4] and the strict Biba model [5]. This policy uses the following access rules:

� Simple Security Policy

A subject may access an object for reading if the sensitivity label in the current MAC label of the
subject dominates the sensitivity label of the object.

� Simple Integrity Policy

A subject may access an object for reading if the integrity label of the object dominates the integrity
label in the current MAC label of the subject.

� Security *-Policy

A subject may access an object for writing if the sensitivity label of the object dominates the sensitivity
label in the current MAC label of the subject.

� Integrity *-Policy

A subject may access an object for writing if the integrity label in the current MAC label of the subject
dominates the integrity label of the object.

Since the policy used is a combined policy, both the simple security and integrity policies must be satis�ed
to access an object for reading. Similarly, to access an object for writing, both the security and integrity
*-policies must be satis�ed. Control of creation and deletion of hierarchically structured objects, such as
those in the �le system, are based upon the ability to write the directory containing the object.

An earlier version of the Bell and LaPadula model than [4] also required that the level of the object should not
change (\the Tranquillity Principle"). [4] proves that it is possible to change the level of an object without
violation of the policy rules just described. This requires accesses by a subject to an object be checked
and possibly revoked when an object level changes. XTS-300 allows object levels to change (consistent with
policy), revalidating access whenever this happens.

6.2.2 Discretionary Access Control Policy

In contrast to the MAC policy, the DAC policy grants access based on a relationship between a named user
and a named object. All subjects have associated with them (in the Active Process Table Entry (APTE)
for the process) the identity of the user and group on whose behalf the subject operates. This association is
established at the time of process initiation, and can be changed only by the TCB.

87
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 6. TCB PROTECTION MECHANISMS

In a manner similar to UNIX, STOP 5.2.E supports the concept of real and e�ective user identi�cation.
Access checks are done based on the current e�ective user and group identi�cation. This identi�cation may
be changed. The real user and group IDs are retained, independent of changes to the e�ective user, for
auditing purposes. A separate gate, usable for this purpose only by trusted code, must be used to change
the real user/group IDs.

The potential access allowed2 to a subject, operating on behalf of a named user/group, is speci�ed by the
Access Control List (ACL). In the STOP 5.2.E system, ACLs are stored along with the object subtype. (see
Section 6.3.2) information. Each ACL contains the following information:

� Owning User ID of the object, and the allowed access modes of that user. For a process, this user ID
is interpreted as the e�ective user ID.

� Owning Group ID of the object, and the allowed access modes of that group. For a process, this group
ID is interpreted as the e�ective group ID.

� A list of up to seven (see Section 9.7, page 136) other users or groups,3 and their allowed access modes.

� Allowed access modes for any other user or group that has not already been covered.

When an object is accessed, the ACL for the object is examined to �nd the �rst entry that matches the
e�ective user or group of the subject that issued the access request. This search is equivalent to the following.
The speci�c algorithm used in STOP 5.2.E is shown in Figure 6.2.

1. The owning user is compared with the e�ective user. If they match, the permissions for the owning
user are used.

2. If the owning user does not match the e�ective user, the ACL is examined to determine if there are
any ACL entries that match the e�ective user requesting access. If an entry is found that matches (the
�rst one found is used), the permissions associated with that ACL entry are used.

3. If no match is found for the e�ective user in the ACL, the owning group is then compared against the
e�ective group. If this comparison is successful, the permissions for the owning group are used.

4. If the owning group does not match the e�ective group, the ACL is examined to �nd the �rst entry (if
any) that matches the e�ective group. If such an entry is found, the permissions associated with that
entry are used.

5. If no match is found for the e�ective group in the ACL, the \others" permissions are used.

Once a match is found, the permissions are examined to determine if the requested mode of access is one of
the allowed access modes for that subject.

There are three allowed access mode bits in each ACL entry; any combination is syntactically valid (although
it may have no semantic meaning). These bits are:

read If this bit is set, the user or group is allowed read access to the object (if allowed by the
MAC policy).

2The term \potential" is used because the ACL does not specify the current access, only the allowable access. The potential
access becomes an actual mode of access when the subject opens the object in a particular access mode.

3A bit is used to indicate whether the given ID refers to a group ID or a user ID.

88
final: 3 August 2000

Final Evaluation Report Wang XTS-300
6.3. ADDITIONAL SUPPORTING PROTECTION MECHANISMS

write If this bit is set, the user or group is allowed write access to the object (if allowed by the
MAC policy).

execute If this bit is set, the user or group is allowed \execute" access to the object (if read access
is allowed by the MAC policy). This bit may be ignored or be meaningless for certain
types of objects (for example: devices, named First-In First-Out (FIFOs) processes). For
directory �le system objects, this bit is not interpreted as \execute," but as \search."

If the particular bit for that type of access is not set, the corresponding user or group is denied that mode
of access. Hence, to deny access to a given user or group, the bits for all types of access would not be set.

6.2.3 Enforcement of Policy

Although the basic policy enforced is the same for all subjects and objects, there are di�erences in the speci�c
mechanisms used to provide that enforcement. This section presents these speci�cs, including, for each type
of object, discussions on: where policy is enforced for the object in the system, how a user can change the
attributes of the object, and what happens as a result of changes to the attributes of the object.

Proprietary material removed.

6.3 Additional Supporting Protection Mechanisms

In addition to the TCB mechanisms that provide enforcement of the MAC and DAC policies, STOP 5.2.E
provides four additional protection mechanisms that are not directly policy related. These mechanisms
provide additional TCB protection, support of least privilege, and a controlled means of bypassing security
policy.

6.3.1 Descriptor Privilege Level

This is a hardware mechanism used to restrict access to segments in memory, thus providing TCB self-
protection. This is described in more detail in Section 3.4.3.5, page 25.

6.3.2 Subtypes

Another supporting TCB protection mechanism is the subtype mechanism. Subtypes are like tokens in a
capability-based system; to access an object, a subject must possess the object subtype for the object.

This mechanism is used by the kernel to restrict access to objects. The system supports subtypes for
processes, segments, and devices. The primary use of subtypes is to provide control over the trusted path {
when the Secure Attention Key (SAK) is pressed, the Server changes the subtype of the terminal to prevent
any untrusted processes from accessing it. Other uses of subtypes in the system are as follows:

89
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 6. TCB PROTECTION MECHANISMS

� The trusted program fsm uses segment subtypes to provide exclusive �le access. When fsm starts, it
changes the subtype of all the segments that support the object to a reserved value; thus, any untrusted
processes having the object opened will lose access. This use of subtypes also provides an interlock for
multiple fsms operating on the same �le system object. At the completion of fsm, the original subtype
is restored.

� Subtypes are used to protect audit �les and trusted databases. Only trusted programs are given the
appropriate subtypes necessary to access the �les and databases.

Subtypes are stored with the ACLs and are part of SBTE, DBTE, and the APTE. Internally, subtypes are
stored as 16-bit words. The value of zero is the default { all subjects have access to objects with a subtype
of zero. Each subject has an accessible subtype list consisting of up to �ve subtypes for each object type
(segments, devices, and processes). Only the default subtype is used for process objects.

For devices, terminals are assigned a subtype consisting of the index into the terminal con�guration data
base plus the value of the process family currently attached to the terminal. Each process family is given
only the appropriate subtype. With this mechanism, it is assured that only one process family can access
the terminal; the terminal subtype is set based on the reattach command. When the trusted path is invoked,
the process family portion of the subtype is set to zero, which assures that only trusted software can access
the terminal.

For segments (�les), only two additional subtypes are used: TRUSTED DATA SUBTYPE and AUDIT
DATA SUBTYPE. The audit subtype is used to restrict access to audit data (both the audit �les and the
controlling audit database) to trusted software.4 The trusted data subtype is used to restrict access to
various trusted databases such as the user access database containing passwords to trusted software.

Subtypes are checked by the kernel on every operation on the object. They are initially checked when the
particular object is �rst introduced into the subject's address space (i.e., at the time of mapping) or when
the object is accessed (if mapping is not required). When an object subtype is changed, the descriptor is
invalidated, which forces the subtype to be rechecked. When the subtype list for a process is changed for a
particular category of subtype, all access for that category is rechecked. Accesses where the subtype has not
changed can be viewed as having the subtype checked implicitly, because revalidation of the subtype does
not occur.

Checking of subtypes is done by comparing the appropriate subject's subtype list (contained in the APTE)
to the subtype of the object. In order for the subject to have any form of access to the object, the subtype
of the object must be on the subtype list. The ability to add subtypes to the subtype list of a subject is
controlled by the privilege mechanism.

6.3.3 Capabilities

The third supporting TCB protection mechanism is the capability mechanism, which provides a way for the
system to restrict the ability of users to use commands, thus enforcing a secondary layer of least privilege on
top of that provided by the hierarchical integrity level. Capabilities are a mechanism whereby the commands
and possible actions available to a user from the Secure Server and other trusted software can be restricted.

4Although the audit �les are protected by the audit subtype, fsm can be used to manipulate audit �les by administrators
running at maximum sensitivity and maximum integrity. With fsm, audit �les can be displayed, renamed, and deleted, but not
copied.

90
final: 3 August 2000

Final Evaluation Report Wang XTS-300
6.3. ADDITIONAL SUPPORTING PROTECTION MECHANISMS

It should be noted that support for the capability mechanism is localized to the Secure Server and the trusted
programs called by the Secure Server. Auditing of the use of capabilities is not done directly; it is indirect
through the auditing of the actions taken by the trusted programs.

Capabilities are de�ned for a user by the administrator through the ua edit program. The system understands
the following capabilities:

DOWNGRADE ALLOWED This capability gives a user the ability to set the MAC label of a �le
system object to a lower value.

UPGRADE ALLOWED This capability gives a user the ability to set the MAC label of a �le
system object to a higher value.

The two capabilities mentioned above (DOWNGRADE ALLOWED and
UPGRADE ALLOWED) are used by fsm, which is a trusted program.
Fsm raises the SIMPLE SECURITY EXEMPT privilege when modi-
fying the attributes of a �le; it controls the ability to upgrade or down-
grade the MAC label of a �le through the use of the DOWNGRADE
ALLOWED and UPGRADE ALLOWED capabilities. In addition to the
capabilities, the user issuing the request must be the owner of the
�le system object (unless the user's integrity level is administrator or
higher) and must have a current MAC label equal to the MAC label
of the �le system object. Note how this di�ers from the checks made
when copying �les, which is a service provided by the untrusted (and
unprivileged) CASS.

VIEWING OPTIONAL This capability gives a user the ability to bypass viewing the contents
of a �le when downgrading it.

CUP ALLOWED This capability gives a user the ability to use the cup program to
change the user's password (or another's password, if the user has an
integrity level of administrator or greater).

DISCONNECT ALLOWED This capability gives a user the ability to disconnect process families
from the current session and let the process families operate in the
background. It also controls the ability to run after logout.

KILL ALLOWED This capability gives a user the ability to use the kill or ikill commands
to send a kill signal to processes associated with the current session.

RUN ALLOWED This capability gives a user the ability to use the run command to
invoke the user's default program. It also controls the ability to use
the chd and ccp commands.

SG ALLOWED This capability gives a user the ability to use the sg command to
change the user's current group.

SL ALLOWED This capability gives a user the ability to use the sl command to
change the label of the current session. It also controls the ability of
a user to change the user's default label (cdl command).

91
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 6. TCB PROTECTION MECHANISMS

SHUTDOWN ALLOWED This capability gives a user the ability to use the shutdown command
to bring the system to an orderly halt. It also controls the ability to
generate a system dump via the dump command.

UNMARKED PRINT ALLOWED This capability gives a user the ability to generate printouts that do
not have sensitivity labels at the top and bottom of each page. It
also allows certain printer escape sequences to be sent directly to the
printer. This capability does not suppress the labeling of the banner
pages.

MULTIPLE LOGIN ALLOWED This capability gives a user the ability to be simultaneously logged in
on multiple terminals.

Capabilities are checked by Trusted Software.

6.3.4 Privileges

The last supporting TCB protection mechanism does not actually provide protection; rather, it provides
a controlled mechanism whereby a process operating on behalf of a user can be authorized to bypass the
system security policy in a selected fashion. This is done by associating with each form of policy bypass a
speci�c privilege that must be possessed by the process to exploit the bypass.

Every executable �le in the �le system has associated with it a maximum privilege set that represents
the maximum set of privileges that an instance of that program may have at any point in its lifetime. This
maximum privilege set may not be changed by untrusted users; a user with an integrity level of administrator
must use the tp edit program (see Section 4.7.3.3.10, page 77) to change it. Thus, only trusted programs
have privilege.

Every active process on the system has associated with it (in the APTE) both a maximum privilege set and
an e�ective privilege set. When a process is loaded, the integrity level of the program �le is examined. If it
is a trusted program with an integrity level of operator or above, the maximum privilege is obtained from
the control segment of the executable �le as described above. If it is not a trusted program, the maximum
privilege set is set to the empty set, unless the invoking process possesses the TRUSTED PARENT EXEMPT

privilege. The e�ective privilege set for all processes starts out empty. As a program executes, it may use
the kernel gate set process status, through the set privilege or add privilege function, to change its
e�ective privilege set; however, this set must always be a subset of the maximum privilege set.

A process may also change its maximum privilege set dynamically through the set process status gate.
To do this, however, it must currently possess the MODIFY PRIVILEGE privilege. The trusted program
editor, tp edit, does not allow the administrator to assign this privilege to any trusted program; thus, it can
be present only on programs con�gured in by the vendor.

The following privileges are understood on the STOP 5.2.E system:

� MODIFY PRIVILEGE. Allows a process to modify its maximum privilege set.

� SET LEVEL. Allows a process to change the MAC label of an object.

� UPGRADE LEVEL. Allows a process to upgrade the MAC label on an object.

92
final: 3 August 2000

Final Evaluation Report Wang XTS-300
6.4. IDENTIFICATION AND AUTHENTICATION

� SET DISCRETIONARY ACCESS. Allows a process to change the access control list of an object if it
is not the owner of the object.

� SET OWNER GROUP. Allows a process to change the access control list of an object, the other mode
bits (i.e., setuid/setgid) of an object, or the owning user/group of the object, even if it is not the owner
of the object.

� SET PROCESS ATTRIBUTES. Allows a process to set its clearance label and process family.

� SET SUBTYPE ACCESS. Allows a process to change the current subtype of an object.

� TERMINAL LOCK. Allows a process to retain control of the terminal when a secure attention key is
pressed (see Section 4.7, page 62).

� DEVICE CONTROL EXEMPT. Allows a process to perform primitive hardware control functions on
a device (e.g., loading the controller �rmware).

� SIMPLE SECURITY EXEMPT. Allows a process to bypass the simple security property { i.e., it can
read objects at a sensitivity label that dominates the process' sensitivity label.

� SECURITY STAR PROPERTY EXEMPT. Allows a process to bypass the security *-property { i.e.,
it can write objects with sensitivity labels dominated by the process' sensitivity label.

� SIMPLE INTEGRITY EXEMPT. Allows a process to bypass the simple integrity property { i.e., it
can read objects at an integrity label dominated by the process' integrity label.

� INTEGRITY STAR PROPERTY EXEMPT. Allows a process to bypass the integrity *-property {
i.e., it can write objects with integrity labels that dominate the process' integrity label.

� DISCRETIONARY ACCESS EXEMPT. Allows a process to bypass the discretionary access and sub-
type policies.

� TRUSTED PARENT EXEMPT. Allows a process with an integrity level below operator to load trusted
processes with privileges. When the privilege is present at the time of loading, the privilege bits of
the new process are not zeroed when the creating process is untrusted. It is not currently used by the
STOP 5.2.E.

6.4 Identi�cation and Authentication

STOP 5.2.E requires all users to identify and authenticate themselves before they are allowed to access
system resources. Users identify themselves by entering a unique username, and authenticate their identity
by entering a password. The username and password are initially assigned by the site system administrator.
A user is identi�ed as a system administrator by the current MAC label associated with that user. If the
label includes administrator integrity, then that user may execute system administrator commands.

6.4.1 Trusted Path

A trusted path is established by pressing the SAK which is the <BREAK> key. The trusted path cannot be
initiated by a program or without the user's knowledge because the signal must be generated by hardware.

93
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 6. TCB PROTECTION MECHANISMS

All user actions requiring the protection of a distinct user-to-TCB communication utilize the trusted path.
The trusted path is utilized for login processing, logout, process control, changing passwords, changing
groups, changing home directory, changing access attributes of a �le, changing the security level of the
working user level and system devices, displaying session or system status, outputting a �le to a printer
or terminal, and mounting or unmounting a �le system. It is also used for operator and administrator
commands. The TCB does not initiate any communication to the user via the trusted path.

The TCB does not support trusted path across networks or for pseudo-terminals. In addition, unprivileged
processes cannot establish a login pseudo-terminal.

6.4.2 The Login Sequence

Proprietary material removed.

6.4.3 Password Aging

There is a password expiration date and a password lifetime date that is associated with all user IDs on the
system. The value for each is stored in the Trusted Information database and applies to all users on the
system. These values are site con�gurable; however, the default values are 20 weeks for the expiration date
and 26 weeks for the lifetime date.

When the expiration date is reached, the user is informed and must then update the password in order to
log in to the system. Users must have the CUP ALLOWED capability in order to change their passwords.
Otherwise, the system administrator must change a user's password. If the password is not updated by the
time the password lifetime date is reached, the password is invalid and the user is locked out of the system.
A locked user can log in only after an administrator has changed the user's password. An exception is made
to allow an administrator to log in at the system console even if the user ID for the system administrator is
locked.

6.4.4 Failed Logins

A terminal is locked once a site-speci�ed number of failed login attempts occurs. The default value is �ve
and is stored in the Trusted Information database. A terminal lock is implemented by the system ignoring
the SAK. Whenever a terminal is locked, an audit record is generated and a message is sent to the system
console. The terminal will remain locked until its lockout interval elapses or until the system administrator
issues a cancel terminal lockout command, ctl, to clear the lock.

A terminal's lockout interval is obtained from the Terminal Con�guration database entry for that particular
terminal (if the value is nonzero) or from the default lockout time in the Trusted Information database
where the default value is 60 seconds. Each terminal may have its own lockout time de�ned in the Terminal
Con�guration database. When a terminal is locked, it is locked to all users.

94
final: 3 August 2000

Final Evaluation Report Wang XTS-300
6.5. SET USER ID PROTECTION

6.4.5 Session Control

If a default command processor is speci�ed for the user in the User Access Information database, and the
user's integrity level is below OSS integrity, the successful completion of the login procedure results in the
automatic execution of that command processor as an untrusted process. Successful loading of the command
processor program results in a \leaving trusted environment" message on the user's terminal.

Once the user is logged in, pressing the SAK causes the current process to become detached and a trusted
path to be established by the TCB. The Secure Server displays the current MAC label and family process
id. A prompt for the next command is displayed. At this point, the user can issue Trusted Commands, (see
Section 4.7.3, page 64). The SAK must be pressed for each Trusted Command that is to be issued. The
reattach command is used to reconnect a terminal to a process that was detached by the use of the SAK.
The session is terminated when the logout command is invoked.

6.4.6 Logout

The logout command is used to terminate a terminal session. All active processes that are associated with this
terminal session are killed. Any process from which the user has disconnected via the disconnect command
continue to run. The ownership of the terminal is reset to indicate it is not logged-in. An audit record is
generated for the logout event.

6.5 Set User ID Protection

Proprietary material removed.

6.6 Audit

Proprietary material removed.

6.6.1 Audit Events

Audit events are generated by Trusted Software, TCB System Services, and the kernel. The following audit
events are generated by Trusted Software:

� Print request issued with no markings

� fsm request failed

� Trusted editor service performed

� Change default level command issued

� ctl command issued

95
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 6. TCB PROTECTION MECHANISMS

� cup command issued

� Login attempted

� logout command issued

� sg command issued

� sl command issued

� st command issued

� startup command issued

� shutdown command issued

� Administrator command issued

� Operator command issued

� Device start error.

For the administrator command event and the operator command event, the audit record includes the
particular command that was issued. The trusted editor audit event includes the name of the editor that
was invoked, as well as the service that was performed.

TSS generates audit messages for the following security-related events:

� Discretionary access denials to �le system objects

� Opens and closes of �le system objects and sockets

� Creates and deletes of �le system objects

� Ownership and access changes of �le system objects

� Installation/removal of set user ID programs

� Program loader failures.

� Adding and removing links

� Mounting and unmounting of �le systems

� Failure to successfully bind a socket

� Connect or accept failures for sockets

� Sendto and recvfrom operations for sockets

� Registering and attaching a socket

� Inbound connect failure for network

� ICMP redirect for network

96
final: 3 August 2000

Final Evaluation Report Wang XTS-300
6.6. AUDIT

The Security Kernel generates audit messages for the following security-related events:

� Device/process creation

� Device/process deletion

� Device map

� Device unmap

� Disk error

� IPC message sent

� Process duplication

� Unmounting of a busy �le system

� Any operation that changes the segment/device/process owner, security level, integrity level, or process
privileges/accessible subtypes

� The exhaustion of the following resources (for covert channel purposes):

{ Available processes

{ Segment space within a �le system

� Any access attempt denied because of security or integrity violations

� Any access attempt denied because of discretionary access violations

� Any access attempt denied because of subtype access violations.

6.6.2 Contents of an Audit Record

Each audit record is composed of a header and a data section. The header contains the following information:

� Size of the audit record

� Type of event being audited

� Time the audit record is generated

� Process ID of the process causing the audit event

� MAC label of the process

� E�ective privileges of the process

� Real user ID

� Real group ID.

The data portion of the audit record contains data pertinent to the particular audit event including, but not
limited to, such things as the device ID, MAC labels including both the new label and the old label in the
case of a change, �le system ID, segment name, and privilege set.

97
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 6. TCB PROTECTION MECHANISMS

6.6.3 Audit Preselection

The param edit command allows preselection of auditing by event and by user by updating an event list and
user list in the Audit Information database. In addition, the auditing mechanism is implemented such that
a minimum MAC label may be speci�ed below which audit messages are not generated for object creation,
deletion, and access. This MAC label value is also stored in the Audit Information database. This database
is protected using �le subtypes where access is limited to param edit and the kernel.

The kernel determines whether to generate an audit record based on the state of the event list (that event
is enabled) and the state of the user list (the user ID/real process user ID, is enabled). The Secure Server
forces login and logout to be audited independently of the state of the user list.

6.6.4 Audit Post-Selection

The Trusted Software audit command formats the raw audit data to allow management of the audit �les.
The audit command accepts one of �ve commands:

switch switch the current audit �les in order to accumulate audit data in a new �le

remove remove audit �les

�les list the existing audit �les on the system by name, creation time, and �le size

display display the existing audit data

exit exit the audit command

The display command is used to view the audit data through the use of the following subcommands:

print displays the selected audit �les on the terminal or on a speci�ed printer

reset resets the criteria that have already been de�ned for selection.

select selects audit records from the speci�ed audit �les according to the criteria speci�ed in this
subcommand.

The valid selection criteria are audit event type, start date and time, stop date and time, process id, user
id, group id, device ID, segment ID, trusted editor command name, trusted editor request, �le name, object
level, and audit records generated for a speci�ed range of MAC labels.

show displays the current selection criteria

quit exit the display function.

The audit command is restricted to users whose integrity level is at least Operator and whose security level
is at system maximum. Additionally, to display or delete audit information, the user must be of at least the
Administrator integrity level and at the system maximum security level.

98
final: 3 August 2000

Final Evaluation Report Wang XTS-300
6.7. OBJECT REUSE

6.6.5 Monitoring Security Auditable Events

STOP 5.2.E monitors as imminent security violations the accumulation of repeated failures of login attempts.
For failed login attempts, an audit record is generated for each attempt. After repeated failed login attempts,
a message is sent to the system console and the terminal is locked out (see Section 6.4.4, page 94).

6.7 Object Reuse

Objects examined under the XTS-300 include the following: segment-based objects, directory entries, and
hardware objects. Segment-based objects include segments, processes, �les, directories, device special �les
and named FIFOs. Directory entries contain the �le name and the associated segment unique ID (uid).
Hardware objects include Central Processing Unit (CPU) registers, controller boards or user devices.

6.7.1 Segments

Segment growth occurs only at segment creation time in units of pages. The Segment Manager makes
sure that a segment whose pages will not be �lled with information from disk storage will be cleared upon
allocation by the Memory Manager retrieve page routine. All segment-based objects are created or grown
through calls to common routines in the Segment Manager and Memory Manager. When a segment shrinks,
the TCB clears residual data in partial pages.

6.7.2 CPU Registers

The Kernel never propagates the values of system registers out to a process, even indirectly. Unprivileged
software can read some of the system registers, and the privileged bits in the
ags register, but only the CR2,
LDTR and TR registers are modi�able (indirectly) by a process. However, LDTR and TR always point to
structures for the current process, so no information can be seen from a previous process.

The Intel Pentium II/III CR2, CR3, and CR4 can not be read outside Ring 0. The general purpose,
segment, instruction pointer, and
ags registers are always completely saved and restored across hardware
task switches. The Kernel uses these tasks to implement processes, so there is no way for a process to see
data left over in one of these registers from a previous process. The MSRs can not be read, even indirectly,
by intrusted software, except for the time stamp. Other untrusted code can not modify this register (even
indirectly), however, so there is no object reuse issue. The APIC registers can not be read or written by
untrusted software. This includes the APIC time stamp counter (TSC) which is actually disabled by setting
the CR4 register disallowing any access to it outside privilege level 0.

The instruction prefetch queue is
ushed during task switches. There is also no way for a task to read a
portion of the prefetch queue not meant for the process. There is no way for a task to read the branch target
bu�ers on the Intel Pentium II/III (also they are
ushed during a task switch because CR3 will be reloaded).
The Intel Pentium II/III has additional internal registers and bu�ers to support dynamic execution, but the
argument is the same.

Although the TS bit in CR0 can be read by untrusted code using the SMSW instruction, the XTS-300, ensures

99
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 6. TCB PROTECTION MECHANISMS

that the TS bit remains in the same state on dispatch that it was in when the process last relinquished the
processor. In this way there is no covert channel involving this bit.

All entries into the TSS are cleared when allocated to a new process. Furthermore, the TSS is always
initialized to a known state during the load of the system. From that point on, hardware interrupt handling
will save and restore registers properly.

6.7.3 I/O Device Registers

Except for I/O registers associated with the video card, all access to I/O registers is limited to the kernel.
There is no access outside the kernel to any of the other I/O registers. Access to the video I/O registers is
discussed below in the section on Terminals driver. The software drivers only support the ability to return
the value of the status registers. A user cannot modify the status register in any way. A user can examine
the value of a status register. In essence, the user cannot place any arbitrary value in the status registers.

There are eight classes of devices available to users via the TSS I/O interface. These include terminals, disks
or diskettes, magnetic tapes, PC card, data transfer cartridges, host adapters, sockets and networks. The
Small Computer Systems Interface (SCSI) controller which supports both disk and tape is included in this
discussion. Each of these will be examined from the point of object reuse.

Disks The contents of the 16-bit status register is set to a speci�c value by the hardware
when the disk is opened by a user. This is accomplished by issuing a SEEK to
cylinder zero to the disk drive.

Tapes Upon powerup, the drive performs a series of self-tests. An early failure will
result in the drive disconnecting itself from the SCSI bus while a later failure will
result in an error being returned to the Host Adaptor. Registers and internal
memory (data bu�er) are initialized and the drive is placed in a known state.

The tape is repositioned when the tape drive is opened by a user. The contents
of the 32-bit status register is reset to a speci�c value by the hardware.

Printers For serial printers, the contents of the 32-bit status register is set to a speci�c
value by the hardware when the printer is opened by a user. This is accomplished
by issuing a FORM FEED to the printer. For parallel printers, a FORM FEED
is also sent to the printer so that the status register is set to a speci�c value.

Networks Upon powerup, the Ethernet adaptor is placed in a known state. Both the low-
level bu�er addresses and the control registers that are mapped into the XTS-300
I/O address space are inaccessible outside of the kernel.

Normal I/O is accomplished through command blocks which includes status in-
formation. All command blocks are
ushed (zeroed) during an unmap of the
device.

Sockets Sockets reside in the shared memory segment that is created and controlled by
the TCP/IP daemon. This shared memory segment is used for communication
between sockets and the TCP/IP daemon. The shared memory segment contains
a segment header and socket structures needed for the socket implementation.

100
final: 3 August 2000

Final Evaluation Report Wang XTS-300
6.7. OBJECT REUSE

The shared memory segment header contains controlling information for socket
management. This header is initialized by the TCP/IP Daemon when it creates
the segment. This header is meant to pass information to all processes that
use this segment. There are no user interfaces to provide the outer rings with
information contained within the segment header.

The shared memory segment is only accessible within Ring 1. When a TCP/IP
Daemon terminates, it removes the old shared memory. Also, when a TCP/IP
Daemon starts, it must create a new shared memory segment for communication
with processes using sockets. This prevents any previous socket/network activity
(using the old segment) from interfering with the new segment. All new processes
attempting to use sockets will use the new segment and existing processes will
never have access to the new segment.

The socket structure with controlling information is properly cleared on allocate.
In addition, the mbuf header except for the length �eld is initialized on allocate.
The calling routine then sets the length �eld based on the data that is being
used. Data outside the length �eld is not referenced. This is similar to the
get io buffer mechanism used by other TSS device drives.

Terminals The user ensures that internal and external storage of a terminal is cleared
between sessions. The console is a special case of a terminal and should be
distinguished even further by the fact that an outer ring can directly manipu-
late the console video registers/memory in support of graphic based applications.
However, the following rules are enforced:

Before a program is given direct access to the video adapter, the following steps
are performed:

� All of video memory is cleared (after saving the portions of video memory
that are needed to produce the text display).

� Registers that are modi�able under program direction from within text mod-
e are set to \constant" values. These registers de�ne the cursor type and
the cursor position on the screen.

When the program ceases to have direct access to the video adapter, all video
registers are restored and the portions of video memory needed for text mode are
restored.

These actions have the following implications for object reuse:

� A graphics mode program never sees any left-over video memory contents,
since all of video memory is cleared.

� For video registers that are not modi�ed during text mode operation, a
graphics mode program only sees the register contents that were loaded
when the system was booted, since registers are restored after each use by
a graphics mode program.

� For video registers that are modi�ed during text mode operation, a graphics
mode program only sees the constant values that were loaded when graphics
mode was entered.

101
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 6. TCB PROTECTION MECHANISMS

Host Adapter Upon powerup, the host adapter's registers and internal memory (data bu�er)
are initialized and it is placed in a known state. Note that the host adapter itself
has already been included in the discussion on SCSI peripherals such as disk and
tape. Any I/O to the Host Adapter device itself never causes I/O to a SCSI
device or adapter. Rather, static data that is initialized at system initialization
time (such as the existence and size of a SCSI peripheral) is always returned.

PC Card There are no hardware data structures or registers that are accessible to untrusted
software. However, status information is available to untrusted software via the
MODE SENSE command and request sense data returned after a read or write
error. These values properly re
ect the status/attributes of the device at the
time of the call.

DTCR This device is similar to the PC Card device in that no hardware struc-
tures or registers are accessible to untrusted software. Status information is
available to untrusted software via the REQUEST SENSE, MODE SENSE,
READ DEFECT DATA, and RECEIVE DIAGNOSTICS commands. These
�elds cannot intentionally be set by a process. Like the PC Card, these values
properly re
ect the status/attributes of the device and do not contain process
data.

6.7.4 Directory Entries

When a �le is deleted under XTS-300, both the segment uid of the control segment for the �le and the name
of the �le is deleted, leaving no residual information in the directory (this is a variation from standard UNIX
behavior).

6.7.5 Removable Media

XTS-300 does not support electronic labels on removable media, such as tapes and diskettes. Object reuse
on removable media is accomplished by a combination of electronic and procedural controls. The procedures
for handling cartridge tapes are described in the Trusted Facility Manual (TFM). The following is a sum-
marization of the procedure for cartridge tapes and diskettes. The cartridge tape procedure can be applied
CD-ROMS, PC card, and data transfer cartridges.

6.7.5.1 Tapes

A request is made for a tape drive to the operator by the user via a telephone call or some other means of
communication external to the system. The user provides the operator with a user ID and a desired MAC
level for the device. After checking whether there is a cartridge tape already mounted on the drive,5 the
operator issues the set device access sda command. Using the sda command, the operator will set the level
of the device to that speci�ed by the user and will also set the ACL of the device such that the requesting
user has exclusive access to the drive.

5The operator should eject the tape if it is already present

102
final: 3 August 2000

Final Evaluation Report Wang XTS-300
6.8. USAGE OF TAPES UNDER XTS-300

Once the operator has completed the setup, the user issues a programmatic mount tape or disk request,
that includes the user's ID, the MAC level of the requesting process, the volume (cartridge tape) name (if
any), and the mode of access desired, read and/or write. The TCB than validates access based on the level
of the requesting program and the level of the device. If access is granted, a mount request will appear on
the system console.

If no volume name is provided, the TCB requests the operator to mount a scratch tape. In the case in which
a speci�c volume (cartridge tape) is requested, the TFM recommends that the operator again issue the sda
command to set the MAC level and DAC ACLs for the tape drive to that speci�ed on the external label of
the cartridge tape. The tape is then placed on the drive by the operator. The TCB will revalidate access to
the device after the operator responds to the mount message.

If any cartridge tape is currently mounted and ready to use, and a request to mount a speci�c volume is
made, the TCB will dismount the current cartridge tape. The operator must then use the sda command to
set the security attributes of the tape drive based on the external label of the requested cartridge tape as
described above.

It is not necessary for a user program to unload a tape upon program termination. A tape may be left
loaded for subsequent use by other programs. The TCB will validate access to the tape for each subsequent
request so no security compromise is possible. If a tape is already loaded in the drive and a scratch tape
is requested, the operation of the user's program will resume immediately. If the user's program provides a
volume name and there is a tape already loaded in the tape drive, the tape on the drive will be unloaded.
The TFM states that the operator should set the access attributes of the drive based on the external tape
label associated with the new tape request. Removable media may be declassi�ed only after undergoing a
site-approved degaussing procedure.

6.7.5.2 Diskettes

Diskettes may be used in two ways: as user-owned media or as system media. In the case of use as a system
diskette, diskettes are treated as are system disks. Access to system diskettes is controlled through the sdc,
mount, and unmount Trusted Software commands. If diskettes are treated as user-owned media, they follow
the same procedures as for cartridge tape handling.

Diskettes may be used as a boot media under XTS-300 but only by someone who has access to the system
console.

6.8 Usage of Tapes under XTS-300

XTS-300 does not support electronic labels on tape cartridges. The TFM describes a procedure for mounting
tapes.

The following is a sequence of events which transpire when a user wants to use a tape cartridge.

The initial request to use a tape drive is made externally to the system, at a face-to-face meeting between the
user and operator or by a telephone call. The user provides a user ID and a MAC level. The operator �rst
checks that there is no tape cartridge mounted on the tape drive and subsequently issues the set device access
(sda) command. This sda command will set the MAC level of the tape drive device to that which the user

103
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 6. TCB PROTECTION MECHANISMS

requested, and the DAC (ACL entry) such that the requesting user has exclusive access to the tape drive
(�rst ACL entry is set Read/Write for the user's ID). Since the system devices are owned by \system,"
untrusted users cannot modify the access to these devices.

When this is completed, the user issues a programmatic open disk or tape request,6 which will include the
user's ID, the MAC level of the requesting process, the volume (tape cartridge) name (if any), and whether
the tape cartridge will be modi�ed. Access to the tape drive device will be validated based on the initial sda
command. If access is granted, the mount request will be relayed to the operator at the system console.

If no volume name is provided, the TCB requests the operator to mount a scratch tape.

If a speci�c volume (tape cartridge) is requested, the operator should again use the sda command to set the
MAC level and DAC ACLs for the tape drive device based on the information provided on the external label
of the tape cartridge. The tape cartridge is placed on the drive at the end-of-tape mark and readied. The
TCB will then re-validate access to the tape drive device based on the new security attributes provided.

When actually physically mounting the tape cartridge, the operator can enable or disable write protection
on the cartridge depending on the information provided in the mount request. If write mode was requested
and the write enable mechanism is disabled, the TCB rewinds and dismounts the tape cartridge and makes
a request that the operator write enable it. Subsequent checks are made until the condition is satis�ed.

Before the user program terminates, it should close and dismount the tape cartridge. When a writable tape
has been dismounted, the operator must ensure that the tape cartridge has an external label which includes
the current MAC level of the tape drive. The current DAC information of the tape drive should also be on
the external label.

If any tape cartridge is currently mounted and ready to use, and a request to mount a speci�c volume is
made, the TCB will dismount the current tape cartridge. The operator must then use the sda command to
set the security attributes of the tape drive based on the external label of the requested tape cartridge as
described above.

The TFM contains additional speci�c guidance on how to handle tape volumes.

If the tape cartridge is write-protected, then it is permissible to mount it if the MAC level on the external
label of the tape cartridge is lower than that of the requesting program.

On dismounting a tape cartridge, the operator should always write the MAC level of the tape drive device
on the external label of the tape cartridge.

All scratch tape cartridges must have an external label indicating the highest MAC level at which it was
used. Scratch tapes are assumed to allow universal discretionary access.

Magnetic media may be declassi�ed only after undergoing a site-approved degaussing procedure.

6The TSS open device gate may be called directly, passing in the same information.

104
final: 3 August 2000

Final Evaluation Report Wang XTS-300

Chapter 7

Assurances

7.1 TCB Layering

Layering principles are evident on two levels in XTS-300. One is on a domain level. Starting with the Kernel
domain, the domain of greatest privilege, the ability to control access to Trusted Computing Base (TCB)
objects diminishes from the Kernel domain (Ring 0) to the TCB System Services (TSS) domain (Ring 1) to
the Operating System Services (OSS) domain (Ring 2) to the User domain (Ring 3). In addition, there is
layering within the Kernel domain and the TSS domain.

The Kernel domain is the primary area of security policy enforcement. The kernel enforces Mandatory Access
Control (MAC) policy, performs as a reference monitor on all TCB objects such as segments and devices,
performs physical I/O on all devices, performs auditing on a segment level, and performs Ring 0 initialization
including creating a process execution environment for kernel and TSS processes. The TSS domain provides
the �le system hierarchy (i.e., the kernel is only aware of a
at �le system made up of segments), enforces
Discretionary Access Control (DAC) policy, implements the network protocol stack and provides high-level
services for user I/O. In a TCB process, the Trusted Software running in the Operating System Services
domain provides the user interface (i.e., trusted path), manages process family relationships, performs all
system initialization with the exception of Ring 0 initialization, manages all the TCB databases including
user pro�le information, and enables privileges for software which performs security-relevant functions.

Within the kernel and TSS there is an internal layered structure. Functions at higher levels generally rely on
services provided by lower-level functions. Those functions at lower levels generally rely on less functionality
to execute.

Layering violations within the kernel were permitted in cases of detection of unrecoverable errors or during
interrupt processing. There are ten additional occurrences of kernel layering violations that do not pertain to
error or interrupt processing. It appears that no data abstraction principles have been compromised within
the layering violations. In addition, it appears that none of them lead to any recursive calls.

7.2 Covert Channel Analysis

The vendor has analyzed XTS-300 running the STOP 5.2.E system for sources of covert channels [20]. The
methodology for determining the shared resources is described below.

7.2.1 Shared Resource Analysis

The vendor's analysis of the shared resources was conducted by a thorough review of all resources. In order
to bound this analysis, the vendor excluded those TCB components that do not provide a program interface.

105
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 7. ASSURANCES

The only sources of shared resources that can be used as covert channels are the security kernel and trusted
processes exempt from the mandatory security policy. The security kernel is the primary source of covert
channels since the kernel does not enforce policy on itself when it accesses internal resources; it is exempt
from policy. Similarly, trusted processes, which are exempt from the mandatory security policy and can be
invoked by untrusted software, may also be a source of covert channels since they, like the kernel, are exempt
from policy. Trusted processes that can be invoked only directly by a user (not by a program) cannot be
used as a source of covert channels. Any \object sharing" within the non-kernel domains of an unprivileged
process cannot be used as a source for covert channels because all access is mediated by the kernel; all such
object accesses comply with the system's mandatory security policy.

The guidelines described above were used to determine the following �ve basic categories of shared resources:

1. Global variables that exist within the kernel upon the completion of startup

2. Global variables that are dynamically allocated and deallocated by the kernel during execution

3. Process-local variables that are accessed by the kernel on behalf of another process

4. Variables that are accessed by TCB daemon processes exempt from mandatory policy

5. All hardware components.

The �rst three categories are data variables under control of the kernel. The vendor created lists of these
global resources by reviewing the kernel design document and checking against the kernel source code. The
fourth category, those resources that are accessed by the TCB daemon processes, was compiled from the
Trusted Software and TSS design documents. The last category includes all hardware components because
all hardware is sharable.

A second phase of analysis was then conducted which consisted of examining each resource obtained in the
above process to see if it could be used in any manner such that one process could modify it, and another
process could examine it, even if either modi�cation or examination required indirect intervening steps. The
resources that resulted were then analyzed to determine if there were any constraints on their use (such
as restriction of modi�cation or examination to privileged processes), causing them to be eliminated from
further consideration.

The remaining resources were then examined individually, and a covert channel exploitation scenario con-
structed for each one. The scenario was then used as a basis for calculating the maximum rate at which the
channel could be employed. The results of this analysis are contained in the report [20].

7.2.2 Capacity Limitation Techniques

STOP 5.2.E employs two covert channel capacity limitation techniques: time delay and the introduction of
noise.

7.2.2.1 Resource Exhaustion Delay

The resource exhaustion delay is used to reduce covert storage channel capacity without eliminating any user
capabilities. The delay is imposed only when a resource exhaustion error occurs. The resource exhaustion

106
final: 3 August 2000

Final Evaluation Report Wang XTS-300
7.3. DESIGN SPECIFICATION AND VERIFICATION

delay is a site-set time interval (the default is 102.4 seconds) that puts processes to sleep for a set amount of
time when a resource exhaustion condition is encountered. The param edit command is used to change the
default value. Processes that use branch blocks, data blocks, memory tables, or large page tables trigger the
delay when system resources are exhausted. The use of the delay generates an auditable event.

7.2.2.2 Introduction of Covert Channel Noise

The ability of one process to determine the behavior of another based on consecutive values of unique
identi�ers (uid) is a known channel in trusted systems. On XTS-300, this channel is controlled by randomizing
uids, e�ectively introducing noise into the process.

Two uid generation algorithms are used to name the fundamental TCB objects { devices, processes,
semaphores and segments. One algorithm is used for devices, segments and semaphores, and the other
for processes. Since devices may be created and removed only by trusted software, a potential channel exists
only for segments, semaphores and processes.

The randomization of process uids is uniformly distributed across the entire range of such uids. For segment
uids, however, Wang chose a technique that limits the rate at which the channel operates. Semaphore uids
use the same randomization technique as segment uids but an auditable delay is added similar to the resource
exhaustion delay in order to limit the bandwidth below ten bps.

7.3 Design Speci�cation and Veri�cation

The vendor used the Bell and LaPadula model [4] with the Biba model [5] as the abstract model and
its Multics Interpretation [4] as the concrete model. The Biba model was incorporated into the Bell and
LaPadula model through a modi�cation of the de�nition of the dominates relation.

The system allows four access modes: read, write, execute, and search. The read and execute modes map to
the read mode in the Bell and LaPadula model. The search mode is a restricted form of read mode in the
Bell and LaPadula model. It only applies to the discretionary access control decisions; for the mandatory
access control, read access is required. The write mode maps to the append mode in the Bell and LaPadula
model.

� The system state has four components: current access set, access permission matrix, level functions,
and object hierarchy.

� The current access set consists of the tuples (subject, object, access mode).

� The access permission matrix contains access modes allowed to each subject for each object.

� Three level functions provide subject maximum clearance level, current subject MAC label, and current
object MAC label.

� The object hierarchy ensures that the MAC label of an object dominates the MAC label of the object's
parent.

107
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 7. ASSURANCES

The model has three axioms (policies). The �rst policy is called the simple security policy and it ensures
that a subject can only read the objects whose MAC label is dominated by the maximum clearance of the
subject. The second policy is called the security star property and it ensures that a subject can read an
object only if the subject's current MAC label dominates the object's MAC label. This policy further ensures
that a subject can only write to an object if the MAC label of the object dominates the current MAC label
of the subject. The third policy is the discretionary security policy, which ensures that a subject can only
access an object in the access modes explicitly granted to the subject for that object.

The model uses 11 rules of operation. Of the rules, �ve manipulate the current access set; they are: get
read access, get append access, get execute access, get write access, and release read/append/execute/write
access. Two rules manipulate the access permission matrix: give read/append/execute/write access, and
rescind read/append/execute/write access. Two manipulate the level functions. These rules are: change
subject current MAC label, and change object MAC label. Two others manipulate the object hierarchy:
create object, and delete object.

The vendor has identi�ed 34 state-transforming TCB interface operations. For each of these 34 operations,
the vendor provided the following in the English language: interface description, security checks from the
MAC and DAC viewpoints, state-transformation rules, and restrictions in terms of constraints in addition
to the MAC and DAC checks (e.g., required capabilities to successfully invoke the operation). The rules
are translated into a sequence of the rules based on the 11 Multics Interpretation rules. Some of the
rules are described as the variants to the original 11 rules for one of the following reasons: some objects
(e.g., temporary segments) are not members of the object (�le) hierarchy, or changes to the access control
matrix are made without altering current accesses. Several TCB interfaces are not modeled because they
are state-preserving for one of the following reasons: obtaining object attributes, setting unmodeled (not
security-relevant) attributes of objects (MAC and DAC policies are still enforced on the objects), internal
TCB implementation functions, and object-referencing (I/O) functions.

The vendor has provided a Descriptive Top-Level Speci�cation (DTLS) [16] that describes the TCB interface
operations through the kernel gates, the TSS gates, and the trusted commands. In combination with the
Trusted Programmer's Reference Manual [34] and User's Manual [35], each interface description includes the
following: function of the interface, inputs, outputs, security checks made by the TCB, and the errors and
exceptions reported by the TCB. The DTLS is complete and consistent with respect to the security model.

7.4 TCB Recovery

The system recovery after a failure is accomplished by rebooting. After a failure, the �lesystems may not be
in a secure state, because the segments in memory and on the disk may not have been synchronized at the
time of the system failure. To ensure that a �lesystem is in a secure state, the system provides two trusted
commands: check and fscheck. For a detailed description of these commands, see Section 4.7.3.2.2, page
69. When a �lesystem is mounted, the kernel sets the \mounted"
ag in the super page of the �lesystem.
The kernel resets this
ag upon unmounting a �lesystem. The kernel does not mount a �lesystem if the
\mounted"
ag is already set.

The super page of a �lesystem also contains a
ag called \checked." This
ag is set by the check program
after performing segment level repair. The fscheck program will not run unless the \checked"
ag is set,
i.e., the check program has been run. The fscheck program performs the hierarchical �le system level repair
and resets the \checked" and \mounted"
ags. Thus, all mounted �lesystems must have the check and the

108
final: 3 August 2000

Final Evaluation Report Wang XTS-300
7.5. CONFIGURATION MANAGEMENT

fscheck programs run against them after a system failure. The check program must be run before the fscheck
program. The check and the fscheck programs ensure that the segments and �lesystems are in a secure state.

7.5 Con�guration Management

The vendor has produced manuals [30, 19] that describe the con�guration management system employed
and the processes by which the system is maintained during each Rating Maintenance Phase (RAMP),
respectively.

Because the base hardware used for the XTS-300 is comprised of COTS products, a method of keeping track
of revisions is mandatory. Some third-party vendors provide change noti�cation in advance. Others provide
little or no notice. Wang keeps a list of accepted components by serial, model, and revision number. As each
component is received, it is inspected visually to determine whether the component numbers are the same
as those on the list. When a change is detected, Wang requests change information from the third-party
vendor. Regardless of whether the change information is received from the third-party vendor, a subset of
the test suite is always run on the assembly room
oor. If all tests pass, the new component revision is
added to the acceptable product list.

The Hardware Engineering Group (HWEG) is responsible for evaluating and testing any hardware changes
prior to acceptance into the XTS-300 product. The HWEG performs tests (in addition to those performed
by Intel) to ensure that a standard product change does not have an e�ect on XTS-300. If a change is
determined to have an impact on XTS-300, additional testing using STOP 5.2.E is performed, the extent of
which is determined by the Software Con�guration Review Board (CRB).

The software con�guration management for STOP 5.2.E follows a formal change reporting and review pro-
cedure. When a discrepancy is reported or an enhancement required, it is usually entered into the Problem
Report (PR) database. When work is ready to commence on an existing PR or an immediate problem or
enhancement is needed, an analyst is assigned (usually one of the senior members of a functional software
development area) who prepares a report in the Internal Software Note (ISN) database summarizing the
situation and the proposed action.

The report is evaluated and is reviewed by management. A copy of the ISN is then circulated to members
of the Software Con�guration Control Board (CCB). This board, which communicates by email, consists of
lead analysts from the software development team, as well as representatives from HWEG, and engineering
management.

It is the CCB's responsibility to evaluate the impact of the proposed change and to verify that the proposed
changes are comprehensive and technically sound. This review of the CCB is viewed as preliminary and
advisory in nature. If a developer starts work before CCB approval, or ignores the advice of the CCB, then
they risk having spent time on wasted e�ort when the next phase, the Change Review Board (CRB), reviews
the work actually performed by the developer.

After development work is completed, the more important phase of the review process begins. This second
review is performed by the CRB and consists of a review of the modi�ed code and all relevant documentation,
testing, and performance analysis ensuring that they are adequately covered1. Standard software tools (e.g.,
Source Code Control System (SCCS), lint, di�) are utilized in order to organize the changes and make them
more convenient for the CCB to analyze.

1The full procedure involving the CRB is utilized, even for \emergency" �xes.

109
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 7. ASSURANCES

The CRB makes the �nal decision with respect to all changes to STOP 5.2.E.

All source code, test code and design documentation is maintained under SCCS.

7.6 System Integrity

XTS-300 has a multitude of tests that can be executed to test the integrity of the hardware. The Wang
provides three categories of tests: COTS o�ine tests, BIOS power-on self-tests (POST), and Wang-written
tests.

The COTS o�-line tests include, but are not limited to, the testing of many CPU instructions, known bugs
in earlier CPU chips, FPU instructions, repeated reads and writes of di�erent patterns to all memory, checks
for bad address lines, all DMA channels and registers, interrupt controller priorities and vectoring, parallel
controller reads and writes, ethernet controller, disk, tape and CD-ROM tests, and invalid opcode tests.

The BIOS POST test is performed prior to loading STOP 5.2.E. The POST performs both security relevant
and non-security relevant tests. Of the security relevant tests, the following tests are included: reads and
writes of several values into all CPU registers, reads and writes to DMA registers, reads and writes of data to
all motherboard and adapter card memory locations, reads and writes to all main memory, reads and writes
of data to the CMOS RAM, data cache and cache disable, the keyboard interface, Programmable Interrupt
Timer (PIT) channels 0, 1, and 2, simple display features, and entering and exiting protected mode.

In addition to BIOS POST, some hardware controllers perform self-tests in response to the hardware \reset"
condition which propagates through the system during every reboot. These tests are performed by the SCSI
host adapter, the SCSI tape drive, the SCSI CD-ROM drive, and the SCSI disk drive.

The Wang-written tests are a subset of the existing security test suite for the XTS-300. These tests are
run o�-line from a special bootable STOP 5.2.E diskette which is provided to all XTS-300 customers. The
tests cover the following areas: segmentation, I/O protection, privileged instructions, control transfers,
trap/interrupt/fault handling, and tasking.

7.7 Testing

Wang has provided the security analysis team with a test plan [26] describing their approach to testing
the system and detailing the test procedures [27, 28] developed to exercise all TCB interfaces over as full a
range of parameter values and boundary conditions as was practical2. The security analysis team reviewed
the vendor's Test Procedures documents that describe each of the individual tests developed by the vendor.
Additionally, the team conducted their own set of penetration tests, the conclusions of which are summarized
in Section 8.20, page 128.

The XTS-300 system is continuously exercised outside of the formal testing environment through activities
described below. Some application development (primarily trusted) is being produced and maintained on
production XTS-300 systems at Wang. As further evidence that the system is usable and functional outside
of the formal testing environment, the XTS-300 system is currently operational at several sites including the

2The vendor also relied on code path analysis that was performed during the original evaluation to provide assurance that
data was passed correctly from TSS to the kernel [15, 14].

110
final: 3 August 2000

Final Evaluation Report Wang XTS-300
7.8. ARCHITECTURE STUDY

Federal Bureau of Investigations (FBI), the Canadian Government, the National Security Agency (NSA),
National Research Laboratory (NRL), Pentagon (Joint Sta� J6), Sandia National Laboratories, Naval Post
Graduate School, DoD's Defense Message System (DMS), NIMA, US CENTCOM, various sites in the
Intelligence Community, United States Space Command (USSPACECOM) and North American Defense
Command (NORAD), Wright Patterson Air Force Base(WPAFB) and the United States Forces in Korea
(USFK) primarily in network guard applications.

7.8 Architecture Study

A formal architecture study was conducted during the original evaluation and documented in [14]. The
security analysis team relied on the results of the original study and the study conducted for STOP 4.1 and
STOP 4.4.2 to determine the extent to which the architecture of the XTS-300 running STOP 5.2.E was
examined. The security analysis team conducted a detailed study of the code that changed from STOP
4.4.2 to STOP 5.2.E, which represents approximately ten percent of the TCB. The team examined the code
primarily to be sure that the XTS-300 still satis�ed the B3 requirements for system architecture. The team
also analyzed the design documentation to con�rm the correspondence between the implementation and the
design documentation.

A formal architecture study was performed during the last week of October. The security analysis team did
the following for the code that was inspected:

� Assess the degree and manner of interaction of the module with other modules, to judge to what extent
it supported the aim of a modular TCB.

� Assess the degree and manner of interaction of each function within the module with other functions.

� Analyze the usage of global variables by the module, and the functions within the module.

� Examine how well the goal of data hiding was achieved.

� Consider the complexity and comprehensibility of the module, and the functions within the module.

� Investigate whether the use of any module or function depended on side-e�ects of that module or
function.

� Check the accuracy and the degree of correspondence of the design documentation and source code.

� Check the code for conformance with Wang's coding standards [18].

� Search for duplicate code.

� Search for duplicate data.

� Consider whether privileges were acquired only when needed by modules, and relinquished when no
longer needed.

The security analysis team concluded that the B3 requirements for system architecture are satis�ed.

As was the case during the original evaluation, the team used the detailed design documentation, rather
than the DTLS, as the basis for establishing correspondence with the implementation. The detailed design

111
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 7. ASSURANCES

speci�cation were used because they contained detail absent from the DTLS and because Wang regards them
as the primary documentation of the system design.

112
final: 3 August 2000

Final Evaluation Report Wang XTS-300

Chapter 8

Evaluation as a B3 System

8.1 Discretionary Access Control

Requirement

The TCB shall de�ne and control access between named users and named objects (e.g., �les and programs)
in the ADP system. The enforcement mechanism (e.g., access control lists) shall allow users to specify
and control sharing of those objects, and shall provide controls to limit propagation of access rights. The
discretionary access control mechanism shall, either by explicit user action or by default, provide that objects
are protected from unauthorized access. These access controls shall be capable of specifying, for each named
object, a list of named individuals and a list of groups of named individuals with their respective modes
of access to that object. Furthermore, for each such named object, it shall be possible to specify a list of
named individuals and a list of groups of named individuals for which no access to the object is to be given.
Access permission to an object by users not already possessing access permission shall only be assigned by
authorized users.

Applicable Features

The XTS-300 Trusted Computer Base (TCB) allows named users to de�ne and control access to named
objects through the use of an Access Control List (ACL). Every subject in XTS-300 has associated with it
an e�ective user and group; every named object has an ACL.1 Each ACL contains permissions that specify
the allowable access for the owning user, the owning group, up to six other users or groups, and any user
or group not explicitly listed. These permissions can either grant or deny a particular form of access to a
named object. When a subject introduces an object into its address space, the ACL is checked to ensure
that the subject can access the object. If the ACL is changed, XTS-300 forces revalidation of access.

When an object is created, the default discretionary access control (DAC) is either speci�ed by the creator or
restricted to the creator. File system objects have an additional level of default protection in that a subject
must be able to access the directory to access the objects contained therein. Propagation of access rights is
controlled by restricting the ability to change the owning user or group of an object to the object's owner or
a user with the appropriate privilege.

For more information on the discretionary access control mechanisms provided in XTS-300, see Section 6.2.2,
page 87.

1Sockets do not have an explicit ACL but an implicit ACL of the shared memory segment associated with them. This ACL
only gives R/W access to the owner or an attached process.

113
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 8. EVALUATION AS A B3 SYSTEM

Conclusion

XTS-300 satis�es the B3 Discretionary Access Control requirement.

8.2 Object Reuse

Requirement

All authorizations to the information contained within a storage object shall be revoked prior to initial
assignment, allocation or reallocation to a subject from the TCB's pool of unused storage objects. No
information, including encrypted representations of information, produced by a prior subject's actions is to
be available to any subject that obtains access to an object that has been released back to the system.

Applicable Features

Segments, TCB internal data structures, registers, device controllers, and directory entries are handled
correctly in terms of object reuse. Tapes are properly handled through administrative techniques and de-
gaussing. A more complete description of object reuse under STOP 5.2.E is discussed on Section 6.7, page
99.

Conclusion

XTS-300 satis�es the B3 Object Reuse requirement.

8.3 Labels

Requirement

Sensitivity labels associated with each ADP system resource (e.g., subject, storage object, ROM) that is
directly or indirectly accessible by subjects external to the TCB shall be maintained by the TCB. These
labels shall be used as the basis for mandatory access control decisions. In order to import non-labeled data,
the TCB shall request and receive from an authorized user the security level of the data, and all such actions
shall be auditable by the TCB.

Applicable Features

Every identi�ed storage object in XTS-300 has associated with it a Mandatory Access Control (MAC) label
(consisting of a sensitivity label and an integrity label) that is maintained by the TCB. These labels are
used by the TCB to enforce the requirements of the XTS-300 mandatory access policy. Non-labeled data
can only be imported in XTS-300 via a single-level logical device; the TCB uses the MAC label assigned to

114
final: 3 August 2000

Final Evaluation Report Wang XTS-300
8.4. LABEL INTEGRITY

the device to label the imported data. The action of a user obtaining initial access to a device is audited, as
is the action of an administrator establishing the current MAC label of the device.

For more information, see Section 5, page 83, for a discussion of the labels associated with objects in XTS-300;
Section 6.6, page 95, describes auditing in XTS-300.

Conclusion

XTS-300 satis�es the B3 Labels requirement.

8.4 Label Integrity

Requirement

Sensitivity labels shall accurately represent security levels of the speci�c subjects or objects with which they
are associated. When exported by the TCB, sensitivity labels shall accurately and unambiguously represent
the internal labels and shall be associated with the information being exported.

Applicable Features

All MAC labels (which consist of both sensitivity and integrity labels) in XTS-300 are maintained by the
TCB, which protects the labels from unauthorized modi�cation. These labels are assigned initially based
on the current MAC label of the creating subject, which is in turn derived from the default MAC label
of the user on whose behalf the subject is operating. This default MAC label, which is dominated by the
user's clearance, is initially assigned to the user by the administrator via ua edit; a user with the appropriate
capability may change this default level via the change default level (cdl) command.

The only multilevel device to which labels are exported in XTS-300 are disk devices being accessed as
�lesystems. Filesystems are maintained by the XTS-300 TCB, and use the same segment structure as is
possessed by the segment when in memory. The sensitivity label for a segment written to a �le system
will also be written to that �lesystem (as part of the Segment Branch Table Entry (SBTE)). There is one
exception to this rule: temporary and shared memory segments may be written to the boot �lesystem while
their SBTEs are held in memory. However, temporary segments are deleted once they are no longer mapped
into any process' address space, while shared memory segments are not preserved across bootloads.

In terms of single-level devices, labels are also exported to tapes by the trusted fsave program. The tape
itself is labeled at the MAC label of the fsave program, which must dominate the upper end of the MAC
label range of the �lesystem being saved. The fsave program writes tapes using the segment block structure
of the �lesystem; labels are written in their internal format as branch blocks.

For more information, see Section 6.2.1, page 86.

115
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 8. EVALUATION AS A B3 SYSTEM

Conclusion

XTS-300 satis�es the B3 Label Integrity requirement.

8.5 Exportation of Labeled Information

Requirement

The TCB shall designate each communication channel and I/O device as either single-level or multilevel.
Any change in this designation shall be done manually and shall be auditable by the TCB. The TCB
shall maintain and be able to audit any change in the current security level or levels associated with a
communication channel or I/O device.

Applicable Features

In the XTS-300 TCB, all non-�lesystem I/O devices are single-level (�lesystem devices are single-level only
when they are accessed as a device and not as a �lesystem). Filesystems can either be multilevel or single-
level. Filesystems possess ranges and are single-level if the minimum and maximum MAC labels are equal.
Trusted programs are provided to allow users with appropriate privilege to change the designated ranges of
�lesystems (con�g edit) and the designated level of a single-level device (sda). Filesystems, although multi-
level, cannot have this range changed; is it speci�ed at the time the �lesystem is created by an administrator
via mkfsys. All possible changes are audited.

More information can be found in the following sections:

� Section 4.7.3.2, page 68, provides a discussion of the trusted commands used to manipulate device-
related labels.

� Section 6.6, page 95, provides a discussion of the auditing associated with device label changes.

Conclusion

XTS-300 satis�es the B3 Exportation of Labeled Information requirement.

8.6 Exportation to Multilevel Devices

Requirement

When the TCB exports an object to a multilevel I/O device, the sensitivity label associated with that object
shall also be exported and shall reside on the same physical medium as the exported information and shall
be in the same form (i.e., machine-readable or human-readable form). When the TCB exports or imports

116
final: 3 August 2000

Final Evaluation Report Wang XTS-300
8.7. EXPORTATION TO SINGLE-LEVEL DEVICES

an object over a multilevel communication channel, the protocol used on that channel shall provide for the
unambiguous pairing between the sensitivity labels and the associated information that is sent or received.

Applicable Features

The only multilevel device supported by XTS-300 are disk devices accessed as �lesystems. Filesystems use
the same segment structure as is used in memory. Access control information (including the MAC label) is
maintained in the SBTEs, which are stored on the same �lesystem as the segments they describe. When a
segment is brought into memory by the kernel File System Manager, these MAC labels are an integral part
of the information transmitted.

When a disk is accessed as a raw device, as is done when a �lesystem is created and checked, it is treated
as a single-level device. In these operations, the program accessing the device is trusted to maintain label
integrity. fsave and frestore are trusted to properly maintain the labels associated with the segments written
to tape.

For more information, see Section 4.5.5.2, page 51.

Conclusion

XTS-300 satis�es the B3 Exportation to Multilevel Devices requirement.

8.7 Exportation to Single-Level Devices

Requirement

Single-level I/O devices and single-level communication channels are not required to maintain the sensitivity
labels of the information they process. However, the TCB shall include a mechanism by which the TCB and
an authorized user can reliably communicate to designate the single security level of information imported
or exported via single-level communication channels or I/O devices.

Applicable Features

In order to communicate the MAC label of a non-�lesystem device (all non-�lesystem devices are treated by
XTS-300 as single-level), the XTS-300 TCB provides the administrator, through the trusted path, with the
set device access (sda) command. This command is used to designate the single MAC label (which includes
the sensitivity label) of the data imported from or exported to the logical device. Any changes to the MAC
label of a device are audited.

For more information, see Section 4.7.3.2.10, page 72.

117
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 8. EVALUATION AS A B3 SYSTEM

Conclusion

XTS-300 satis�es the B3 Exportation to Single-Level Devices requirement.

8.8 Labeling Human-Readable Output

Requirement

The ADP system administrator shall be able to specify the printable label names associated with exported
sensitivity labels. The TCB shall mark the beginning and end of all human-readable, paged, hardcopy output
(e.g., line printer output) with human-readable sensitivity labels that properly 2 represent the sensitivity of
the output. The TCB shall, by default, mark the top and bottom of each page of human-readable, paged,
hardcopy output (e.g., line printer output) with human-readable sensitivity labels that properly represent
the overall sensitivity of the output or that properly represent the sensitivity of the information on the page.
The TCB shall, by default and in an appropriate manner, mark other forms of human-readable output (e.g.,
maps, graphics) with human-readable sensitivity labels that properly represent the sensitivity of the output.
Any override of these marking defaults shall be auditable by the TCB.

Applicable Features

The XTS-300 TCB labels all printed output with banner pages (at the beginning and end of each �le) and
internal page labels (at the top and bottom of each page) that re
ect the sensitivity label associated with
the �le being printed. These banner pages cannot be suppressed. A user with the UNMARKED PRINT
ALLOWED capability can suppress the printing of internal page labels (which results in a distinct auditable
event), but cannot change the internal page labels.3 The human-readable forms of the levels and categories
that make up the sensitivity label are obtained from the Security Map database, which is maintained by the
administrator using the sm edit command. The length of the printer page cannot be shortened; the standard
page length does allow space for the maximum sensitivity label.

Spoo�ng is prevented through a combination of system and procedural controls. The header and trailer
banners contain a sequence number which is not alterable by a user. The sequence number is represented
internally by a 16-bit unsigned integer. Operators and administrators are advised by the Trusted Facility
Manual [33] to inspect the printed output to be sure that the sequence numbers are in proper order. If a
user tries to create a false banner page, then the sequence numbering would be out of order. These header
and trailer banner pages will always be generated and cannot be manipulated by a user.

The evaluation con�guration for XTS-300 does not support the ability to produce other forms (e.g., maps,
graphics) of human-readable output.

For more information, see Section 4.7.1.6, page 63.

2The hierarchical classi�cation component in human-readable sensitivity labels shall be equal to the greatest hierarchical
classi�cation of any of the information in the output that the labels refer to; the non-hierarchical category component shall
include all of the non-hierarchical categories of the information in the output the labels refer to, but no other non-hierarchical
categories.

3Supressing page markings is the only way for an application to send printer speci�c escape sequences to the printer.
Otherwise, such sequences are �ltered.

118
final: 3 August 2000

Final Evaluation Report Wang XTS-300
8.9. SUBJECT SENSITIVITY LEVELS

Conclusion

XTS-300 satis�es the B3 Labeling Human-Readable Output requirement.

8.9 Subject Sensitivity Levels

Requirement

The TCB shall immediately notify a terminal user of each change in the security level associated with that
user during an interactive session. A terminal user shall be able to query the TCB as desired for a display
of the subject's complete sensitivity label.

Applicable Features

XTS-300 does not change the MAC label of a subject automatically. A user must explicitly request the TCB
to change the current MAC label maintained for the user by the Secure Server that is used for Secure Server
operations and for labeling subsequent process creation. The ability to change this label is restricted by the
capability mechanism. At any time, the user can issue the sl command to the TCB to ascertain the current
MAC label of the Secure Server. Note that, once created, a process cannot change its MAC label.

Conclusion

XTS-300 satis�es the B3 Subject Sensitivity Levels requirement.

8.10 Device Labels

Requirement

The TCB shall support the assignment of minimum and maximum security levels to all attached physical
devices. These security levels shall be used by the TCB to enforce constraints imposed by the physical
environments in which the devices are located.

Applicable Features

Every physical device in XTS-300 communicates with the TCB through a controller for the appropriate
device type. The TCB identi�es devices through the use of major and minor numbers. The major number
identi�es the device type and is associated with a controller. The minor number identi�es the particular
device on the controller (logical device, if the device supports a �lesystem and is partitioned). The TCB
maintains the major and minor number information in the LDD. This information includes the minimum
and maximum MAC labels that may be possessed by information
owing to and from the device. The TCB

119
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 8. EVALUATION AS A B3 SYSTEM

enforces the restriction that any logical devices accessed via a major and minor number have a MAC label
that is within the de�ned range for the device.

Conclusion

XTS-300 satis�es the B3 Device Labels requirement.

8.11 Mandatory Access Control

Requirement

The TCB shall enforce a mandatory access control policy over all resources (i.e., subjects, storage objects,
and I/O devices) that are directly or indirectly accessible by subjects external to the TCB. These subjects
and objects shall be assigned sensitivity labels that are a combination of hierarchical classi�cation levels and
non-hierarchical categories, and the labels shall be used as the basis for mandatory access control decisions.
The TCB shall be able to support two or more such security levels. The following requirements shall hold for
all accesses between all subjects external to the TCB and all objects directly or indirectly accessible by these
subjects: A subject can read an object only if the hierarchical classi�cation in the subject's security level is
greater than or equal to the hierarchical classi�cation in the object's security level and the non-hierarchical
categories in the subject's security level include all the non-hierarchical categories in the object's security
level. A subject can write an object only if the hierarchical classi�cation in the subject's security level is
less than or equal to the hierarchical classi�cation in the object's security level and all the non-hierarchical
categories in the subject's security level are included in the non-hierarchical categories in the object's security
level. Identi�cation and authentication data shall be used by the TCB to authenticate the user's identity
and to ensure that the security level and authorization of subjects external to the TCB that may be created
to act on behalf of the individual user are dominated by the clearance and authorization of that user.

Applicable Features

The XTS-300 TCB enforces a mandatory access control policy over all identi�ed system resources (i.e.,
subjects, storage objects, and I/O devices) that are accessible, either directly or indirectly, to subjects
external to the TCB. This policy is a combination of the Bell and LaPadula [4] and strict Biba [5] models.
It uses, as the basis of its enforcement, MAC labels that are associated with every subject and object in the
system. These MAC labels consist of hierarchical sensitivity and integrity levels (16 sensitivity, 8 integrity),
and nonhierarchical sensitivity and integrity categories (64 sensitivity, 16 integrity).

XTS-300 provides a dominates function that is used to compare sensitivity or integrity labels; this comparison
is done whenever a subject external to the TCB accesses an object. To read an object, the sensitivity label
of the subject must dominate the sensitivity label of the object, and the integrity label of the object must
dominate the integrity label of the subject. In order to write an object, the sensitivity label of the object
must dominate the sensitivity label of the subject, and the integrity label of the subject must dominate the
integrity label of the object. This is illustrated in Figure 6.1 (page 85).

Every user in XTS-300 has an identi�cation and authentication database record that speci�es the MAC label

120
final: 3 August 2000

Final Evaluation Report Wang XTS-300
8.12. IDENTIFICATION AND AUTHENTICATION

of the user's clearance. The TCB enforces the restriction that any subject created on behalf of a user has a
current MAC label dominated by the user's clearance.

For more information, see Section 6.2.1, page 86.

Conclusion

XTS-300 satis�es the B3 Mandatory Access Control requirement.

8.12 Identi�cation and Authentication

Requirement

The TCB shall require users to identify themselves to it before beginning to perform any other actions
that the TCB is expected to mediate. Furthermore, the TCB shall maintain authentication data that
includes information for verifying the identity of individual users (e.g., passwords) as well as information for
determining the clearance and authorizations of individual users. This data shall be used by the TCB to
authenticate the user's identity and to ensure that the security level and authorizations of subjects external
to the TCB that may be created to act on behalf of the individual user are dominated by the clearance and
authorization of that user. The TCB shall protect authentication data so that it cannot be accessed by any
unauthorized user. The TCB shall be able to enforce individual accountability by providing the capability to
uniquely identify each individual ADP system user. The TCB shall also provide the capability of associating
this identity with all auditable actions taken by that individual.

Applicable Features

STOP 5.2.E requires all users to identify and authenticate themselves before they are allowed to access
system resources. Users enter unique usernames and passwords to identify and authenticate themselves to
the system.

The TCB maintains authentication data including username, password, and the default and maximum
security and integrity levels for each user in the User Access Authentication database. The only user that
this database is accessible to is the system administrator. This database is at maximum security and
maximum integrity. Additionally, this �le is protected from access by untrusted software by assigning it a
unique �le subtype.

This data is used by the Secure Server to authenticate a user's identity and to verify that the user's default
security and integrity levels are within the maximum security and integrity levels allowed for that user, as
well as being within the range of allowed levels for the given terminal.

Each individual is associated with a unique identi�er associated with that individual for recording all au-
ditable actions taken by that user.

121
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 8. EVALUATION AS A B3 SYSTEM

Conclusion

XTS-300 satis�es the B3 Identi�cation and Authentication requirement.

8.13 Trusted Path

Requirement

The TCB shall support a trusted communication path between itself and users for use when a positive TCB-
to-user connection is required (e.g., login, change subject security level). Communications via this trusted
path shall be activated exclusively by a user or the TCB and shall be logically isolated and unmistakably
distinguishable from other paths.

Applicable Features

The TCB establishes a trusted path with a user when the Secure Attention Key (SAK) on the terminal is
pressed (the <BREAK> key). The TCB displays the login banner if no user is currently logged in at that
terminal. If a user is logged in at that terminal, the TCB displays the current process family identi�er
and MAC label information. The path is logically isolated since the establishment of the trusted path by
processing the SAK is initiated by the terminal driver as soon as the SAK is detected. The terminal is then
under the control of the TCB; from then on, no untrusted processes can perform I/O to the terminal. The
path is unmistakable since it is only initiated by the user action of pressing the SAK, and the TCB is in
control of the terminal after the SAK is detected by the terminal driver.4 The TCB never initiates a trusted
path without the user pressing the SAK. Once the trusted path is established by the TCB, the user can
enter any of the Trusted Commands in Section 4.7.3, page 64.5

Conclusion

XTS-300 satis�es the B3 Trusted Path requirement.

8.14 Audit

Requirement

The TCB shall be able to record the following types of events: use of identi�cation and authentication
mechanisms, introduction of objects into a user's address space (e.g., �le open, program initiation), deletion
of objects, and actions taken by computer operators and system administrators and/or system security
oÆcers. The TCB shall also be able to audit any override of human-readable output markings. For each

4Note that trusted path cannot be initiated from a serial mouse or across a network.
5Since the XTS-300 gives untrusted applications two seconds to clean up after SAK is depressed, users should wait at least

that long to ensure that they are really communicating with the TCB.

122
final: 3 August 2000

Final Evaluation Report Wang XTS-300
8.14. AUDIT

recorded event, the audit record shall identify: date and time of the event, user, type of event, and success
or failure of the event. For identi�cation/authentication events the origin of request (e.g., terminal ID)
shall be included in the audit record. For events that introduce an object into a user's address space and
for object deletion events the audit record shall include the name of the object and the object's security
level. The ADP system administrator shall be able to selectively audit the actions of any one or more users
based on individual identity and/or object security level. The TCB shall be able to audit the identi�ed
events that may be used in the exploitation of covert storage channels. The TCB shall contain a mechanism
that is able to monitor the occurrence or accumulation of security auditable events that may indicate an
imminent violation of security policy. This mechanism shall be able to immediately notify the security
administrator when thresholds are exceeded, and if the occurrence or accumulation of these security relevant
events continues, the system shall take the least disruptive action to terminate the event.

Applicable Features

The Audit facility within STOP 5.2.E is used by the TCB to record security-relevant events that take place
on the system.

The File System Daemon process produces audit �les in the /audit directory from information it obtains
from the kernel. The audit �les are protected with �le subtypes that prevent access by untrusted software.

Audit events are generated by Trusted Software, TCB System Services, and the kernel and include the
following types of events:

� Login attempted

� Logout command issued

� Opens and closes of �le system objects

� Creates and deletes of �le system objects

� Operator command issued

� Administrator command issued

� Print request issued with no markings

Each audit record has a header that contains the size of the audit record, type of event being audited, date
and time the audit record was generated, process ID of the process causing the audit event, MAC label of
the process, e�ective privileges of the process, real user ID, and real group ID.

Each audit record also contains data pertinent to the particular audit event including , but not limited to,
the device id, MAC labels (including both the new and old labels in the case of a change), �le system ID,
segment name, channel number, and privilege set.

Audit functions can be selectively audited by event, by user and by object security level. The auditing
mechanism is implemented such that a minimum MAC label may be speci�ed, below which audit messages
are not generated for object creation, deletion, and access.

STOP 5.2.E monitors as imminent security violations the accumulation of repeated login failures. The
number of failures allowed before action is taken is site con�gurable. After this number of failed login

123
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 8. EVALUATION AS A B3 SYSTEM

attempts, a message is sent to the system console and the terminal is locked out. That terminal is no longer
usable until either that terminal is freed up via the ctl command or the duration of timeout has expired.

Conclusion

XTS-300 satis�es the B3 Audit requirement.

8.15 System Architecture

Requirement

The TCB shall maintain a domain for its own execution that protects it from external interference or
tampering (e.g., by modi�cation of its code or data structures). The TCB shall maintain process isolation
through the provision of distinct address spaces under its control. The TCB shall be internally structured
into well-de�ned largely independent modules. It shall make e�ective use of available hardware to separate
those elements that are protection-critical from those that are not. The TCB modules shall be designed such
that the principle of least privilege is enforced. Features in hardware, such as segmentation, shall be used to
support logically distinct storage objects with separate attributes (namely: readable, writeable). The user
interface to the TCB shall be completely de�ned and all elements of the TCB identi�ed. The TCB shall be
designed and structured to use a complete, conceptually simple protection mechanism with precisely de�ned
semantics. This mechanism shall play a central role in enforcing the internal structuring of the TCB and
the system. The TCB shall incorporate signi�cant use of layering, abstraction and data hiding. Signi�cant
system engineering shall be directed toward minimizing the complexity of the TCB and excluding from the
TCB modules that are not protection-critical.

Applicable Features

XTS-300 employs a ring architecture that uses hardware to enforce domain isolation. From the innermost
ring, Ring 0, to the outermost, Ring 3, the ability of the software to access system objects decreases. The TCB
elements are clearly de�ned as the Security Kernel, TCB System Services (TSS), and Trusted Software. Each
element of the TCB executes in a separate domain. Ring 0 comprises the Kernel domain, Ring 1 comprises
the Trusted System Services domain, and, for a TCB process, Ring 2 comprises the Operating Systems
Services domain, which includes that software requiring privilege and/or integrity to execute. For untrusted
software, Commodity Application System Services (CASS) runs in Ring 2. User application software runs
in Ring 3, the domain of least access. The ring architecture is also used to enforce write, read, and call
(execute) access.

Each process has a unique, virtual address space using hardware segments. Only the text for the kernel,
TSS, and CASS plus kernel data, such as the memory map, are considered global information. Each process
has its own copy of ring stacks, process descriptor segments, and process-speci�c text and data. Least
privilege is enforced by tailoring privileges and integrity to particular security-relevant operations and to the
software which needs to perform such operations. The kernel performs as a reference monitor and as a basic
operating system. The kernel manipulates those entities which are objects (e.g., segments) and its internal
data structures. TSS provides the �le system hierarchy and performs high-level user I/O functions. Trusted

124
final: 3 August 2000

Final Evaluation Report Wang XTS-300
8.16. SYSTEM INTEGRITY

Software provides the user interface to perform security-relevant functions and the trusted path. Wang has
published [16] and [25] which de�ne the components of the TCB and its interface. The TCB enforces a strict
interpretation of the Bell and LaPadula security model [4] and the Biba integrity model [5].

Segmentation is used in STOP 5.2.E to support logically distinct storage objects. The permissions set for each
global segment are appropriate, given the contents. TCB text is protected from reading and writing. Data
internal to a domain is manipulated only by the code running in that domain. In addition, the modules
within a domain have been designed to manipulate only those data structures pertinent to the functions
within a particular module. The kernel and TSS are internally layered such that, in general, those routines
that rely on others to perform services are at higher layers. Routines which do not rely on others to perform
functions are placed at lower layers of the kernel and TSS, respectively. In addition, the TCB contains only
that code necessary to perform its functionality. The TCB of XTS-300 is modular and relatively easy to
understand.

Conclusion

XTS-300 satis�es the B3 System Architecture requirement.

8.16 System Integrity

Requirement

Hardware and/or software features shall be provided that can be used to periodically validate the correct
operation of the on-site hardware and �rmware elements of the TCB.

Applicable Features

XTS-300 has a multitude of tests that can be executed to test the integrity of the hardware. Wang provides
three categories of tests: COTS o�ine tests, BIOS power-on self-tests (POST), and Wang-written tests.

For a more detailed description of system integrity features, see Section 7.6, page 110.

Conclusion

XTS-300 satis�es the B3 System Integrity requirement.

125
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 8. EVALUATION AS A B3 SYSTEM

8.17 Covert Channel Analysis

Requirement

The system developer shall conduct a thorough search for covert channels and make a determination (either
by actual measurement or by engineering estimation) of the maximum bandwidth of each identi�ed channel.

Applicable Features

The vendor conducted a thorough analysis of the system and produced a covert channel analysis [20] (see
Section 7.2, page 105). In it, the vendor describes the technique used to ensure the search was thorough,
and describes exploitation scenarios for each of the channels uncovered. Using these exploitation scenarios,
a calculation is made as to the maximum capacity of each of the channels.

Conclusion

XTS-300 satis�es the B3 Covert Channel Analysis requirement.

8.18 Trusted Facility Management

Requirement

The TCB shall support separate operator and administrator functions. The functions performed in the
role of a security administrator shall be identi�ed. The ADP system administrative personnel shall only
be able to perform security administrator functions after taking a distinct auditable action to assume the
security administrator role on the ADP system. Non-security functions that can be performed in the security
administration role shall be limited strictly to those essential to performing the security role e�ectively.

Applicable Features

The system supports the operator and administrator functions through the use of integrity labels. Any user
with an integrity label at or higher than the operator integrity level can execute the operator commands,
provided the user has the required capabilities.

Any user with an integrity label at or higher than the administrator integrity level can perform the ad-
ministrator commands, provided the user has the required capabilities. The administrator integrity level is
higher than the operator integrity level. Thus, a user with the operator integrity level cannot execute the
administrator commands.

The Trusted Facility Manual (TFM) recommends that the untrusted users' assigned maximum integrity
levels should be lower than the Operating System Services (OSS) integrity level (the OSS integrity level

126
final: 3 August 2000

Final Evaluation Report Wang XTS-300
8.19. TRUSTED RECOVERY

is lower than the operator integrity level). Thus, an untrusted user cannot execute the operator or the
administrator commands.

The two ways for a user to assume the role of the administrator is to login with administrator or higher
integrity, or to use the sl command to set the integrity label to administrator or higher. Since all user logins
and the use of the sl command are auditable along with the MAC label, the assumption of the administrator
role is auditable.

A user logged in with the OSS or higher integrity level cannot execute the run command (which is used for
running untrusted programs). This feature limits the user acting in the administrator role (since the user's
integrity level is higher than OSS integrity level) to trusted commands only.

Conclusion

XTS-300 satis�es the B3 Trusted Facility Management requirement.

8.19 Trusted Recovery

Requirement

Procedures and/or mechanisms shall be provided to assure that, after an ADP system failure or other
discontinuity, recovery without a protection compromise is obtained.

Applicable Features

After a system failure, the �lesystems may not be in a consistent and secure state. The system provides two
trusted commands to bring a �lesystem to a secure state. The check command repairs the segment level �le
system and the fscheck command repairs the hierarchical �le system (see Section 4.7.3.2.2, page 69). After
a system failure, a �lesystem cannot be referenced, used, or remounted until both the check and the fscheck
commands are executed.

Conclusion

XTS-300 satis�es the B3 Trusted Recovery requirement.

8.20 Security Testing

Requirement

The security mechanisms of the ADP system shall be tested and found to work as claimed in the system
documentation. A team of individuals who thoroughly understand the speci�c implementation of the TCB

127
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 8. EVALUATION AS A B3 SYSTEM

shall subject its design documentation, source code, and object code to thorough analysis and testing. Their
objectives shall be: to uncover all design and implementation
aws that would permit a subject external
to the TCB to read, change, or delete data normally denied under the mandatory or discretionary security
policy enforced by the TCB; as well as to assure that no subject (without authorization to do so) is able
to cause the TCB to enter a state such that it is unable to respond to communications initiated by other
users. The TCB shall be found resistant to penetration. All discovered
aws shall be corrected and the TCB
retested to demonstrate that they have been eliminated and that new
aws have not been introduced. Testing
shall demonstrate that the TCB implementation is consistent with the descriptive top-level speci�cation. No
design
aws and no more than a few correctable implementation
aws may be found during testing and there
shall be reasonable con�dence that few remain.

Applicable Features

As a basis for comparison, the discussion of the security testing requirement from the evaluation of STOP
3.1.E was retained. The results of the evaluation of STOP 5.2.E are described in the paragraph following
the one below.

The security mechanisms of STOP 5.2.E were subjected to both functional and penetration testing and found
to work as claimed in the system documentation. The team conducted a detailed study of the architecture
of XTS-300 during which they analyzed the documentation and source code in detail.

The architecture study yielded several minor
aws. They were corrected by Wang. Penetration testing
uncovered one implementation
aw, which was �xed by Wang. The testing performed by the team showed
that the system was resistant to penetration. The team found that the TCB implementation was consistent
with the descriptive top-level speci�cation. No design
aws were found and the implementation
aws that
were found during testing were corrected. The team is con�dent that the system is resistant to penetration.

Conclusion

XTS-300 satis�es the B3 Security Testing requirement.

8.21 Design Speci�cation and Veri�cation

Requirement

A formal model of the security policy supported by the TCB shall be maintained that is proven consistent
with its axioms. A descriptive top-level speci�cation (DTLS) of the TCB shall be maintained that completely
and accurately describes the TCB in terms of exceptions, error messages, and e�ects. It shall be shown to
be an accurate description of the TCB interface. A convincing argument shall be given that the DTLS is
consistent with the model.

128
final: 3 August 2000

Final Evaluation Report Wang XTS-300
8.22. CONFIGURATION MANAGEMENT

Applicable Features

The vendor has provided a security model interpretation document [24] based on the Bell and LaPadula model
with the Biba model incorporated through a combined dominance relation and the Multics Interpretation.

The vendor has provided a DTLS [16] that, in combination with the Trusted Programmer's Reference
Manual [34] and the User's Manual [35], describes the TCB operations through the kernel gates, the TSS
gates, and the trusted commands.

The team performed a manual review and comparison analysis of the DTLS and the TCB Detailed Speci�-
cations [21, 22, 23] and found them to be consistent. The Detailed Speci�cations describe the TCB software
at the pseudo-code level.

The team performed a manual review and comparison analysis of the model and the DTLS, the TPRM, and
the User's Manual and found the latter three documents to be consistent with the model.

Conclusion

XTS-300 satis�es the B3 Design Speci�cation and Veri�cation requirement.

8.22 Con�guration Management

Requirement

During development and maintenance of the TCB, a con�guration management system shall be in place that
maintains control of changes to the descriptive top-level speci�cation, other design data, implementation
documentation, source code, the running version of the object code, and test �xtures and documentation.
The con�guration management system shall assure a consistent mapping among all documentation and code
associated with the current version of the TCB. Tools shall be provided for generation of a new version of
the TCB from source code. Also available shall be tools for comparing a newly generated version with the
previous TCB version in order to ascertain that only the intended changes have been made in the code that
will actually be used as the new version of the TCB.

Applicable Features

The vendor's con�guration management plan was described earlier in this report (see Section 7.5, page 109).
It describes the techniques used to maintain control of changes to the system. All design documentation,
including the DTLS, and all source code, including test �xtures, are maintained under SCCS. The di�
command is used to compare newly generated versions with previous versions to ensure that all intended
changes are incorporated in the new version.

129
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 8. EVALUATION AS A B3 SYSTEM

Conclusion

XTS-300 satis�es the B3 Con�guration Management requirement.

8.23 Security Features User's Guide

Requirement

A single summary, chapter, or manual in user documentation shall describe the protection mechanisms
provided by the TCB, guidelines on their use, and how they interact with one another.

Applicable Features

The vendor has provided a User's Manual [35]. The document describes an overview of the system. The
document also includes descriptions of how to use the trusted path, how to login, password control, and a
description of all of the trusted commands available to the user. The User's Manual also contains the shell
commands.

Conclusion

XTS-300 satis�es the B3 Security Features User's Guide requirement.

8.24 Trusted Facility Manual

Requirement

A manual addressed to the ADP system administrator shall present cautions about functions and privileges
that should be controlled when running a secure facility. The procedures for examining and maintaining the
audit �les as well as the detailed audit record structure for each type of audit event shall be given. The manual
shall describe the operator and administrator functions related to security, to include changing the security
characteristics of a user. It shall provide guidelines on the consistent and e�ective use of the protection
features of the system, how they interact, how to securely generate a new TCB, and facility procedures,
warnings, and privileges that need to be controlled in order to operate the facility in a secure manner. The
TCB modules that contain the reference validation mechanism shall be identi�ed. The procedures for secure
generation of a new TCB from source after modi�cation of any modules in the TCB shall be described. It
shall include the procedures to ensure that the system is initially started in a secure manner. Procedures
shall also be included to resume secure system operation after any lapse in system operation.

130
final: 3 August 2000

Final Evaluation Report Wang XTS-300
8.25. TEST DOCUMENTATION

Applicable Features

The vendor has provided two manuals for administrators and operators. The Trusted Facility Manual [33] is
geared to the security administrator for the system and contains an overview of the system, a comprehensive
description of the system's security mechanisms, guidelines on maintaining a secure system, and a description
of all the trusted commands available to all administrators and operators. It describes the TCB, indicating
what portions of the TCB contain the reference validation mechanism. The document also contains descrip-
tions of the audit records for each of the auditable events. It explains how to install the TCB initially, and
how to bring it into operation, both from a normal start, and following a system failure. Another manual,
providing information for programmers, is called \Trusted Programmer's Reference Manual" [34]. It contains
a description of all visible TCB gates, and a description of all routines in the trusted software library. There
are no provisions for a site's generating a new TCB from source; there is only a single version, and it is
generated by the vendor.

Conclusion

XTS-300 satis�es the B3 Trusted Facility Manual requirement.

8.25 Test Documentation

Requirement

The system developer shall provide to the evaluators a document that describes the test plan, test procedures
that show how the security mechanisms were tested, and results of the security mechanisms' functional
testing. It shall include results of testing the e�ectiveness of the methods used to reduce covert channel
bandwidths.

Applicable Features

Wang has supplied the team with a set of documents [26, 27, 28, 29, 17] that describe a comprehensive
approach toward testing the XTS-300 and its security mechanisms. The test documentation includes a test
plan, a test user's guide, and a two-volume test procedure document. Wang's test suite tests all user-visible
error returns from the TCB gates, as well as the designed functionality. The test coverage analysis document
traces parameter passing for all of the gates that call service-level access-decision functions inside the kernel
and TSS, as well as from TSS to the kernel for those TSS functions that directly pass access information to
the kernel.

The methods and e�ectiveness of reducing covert channel bandwidths are described and analyzed in Wang's
Covert Channel Analysis (CCA) [20].

131
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 8. EVALUATION AS A B3 SYSTEM

Conclusion

XTS-300 satis�es the B3 Test Documentation requirement.

8.26 Design Documentation

Requirement

Documentation shall be available that provides a description of the manufacturer's philosophy of protection
and an explanation of how this philosophy is translated into the TCB. The interfaces between the TCB
modules shall be described. A formal description of the security policy model enforced by the TCB shall be
available and proven that it is suÆcient to enforce the security policy. The speci�c TCB protection mech-
anisms shall be identi�ed and an explanation given to show that they satisfy the model. The descriptive
top-level speci�cation (DTLS) shall be shown to be an accurate description of the TCB interface. Docu-
mentation shall describe how the TCB implements the reference monitor concept and give an explanation
why it is tamper resistant, cannot be bypassed, and is correctly implemented. The TCB implementation
(i.e., in hardware, �rmware, and software) shall be informally shown to be consistent with the DTLS. The
elements of the DTLS shall be shown, using informal techniques, to correspond to the elements of the TCB.
Documentation shall describe how the TCB is structured to facilitate testing and to enforce least privilege.
This documentation shall also present the results of the covert channel analysis and the tradeo�s involved in
restricting the channels. All auditable events that may be used in the exploitation of known covert storage
channels shall be identi�ed. The bandwidths of known covert storage channels, the use of which is not
detectable by the auditing mechanism, shall be provided.

Applicable Features

The vendor has provided the hardware documentation for the Intel Pentium II/III [9, 6], for the peripherals [1,
10], and for hardware integrity [17].

The System Architecture document [25] and the DTLS [16] provide the philosophy of protection, and explain
how this philosophy is translated into the TCB.

The System Architecture document [25] de�nes the interfaces between the TCB modules. The Detailed
Software Speci�cations [21, 22, 23] describe the module interfaces in detail (the Detailed Speci�cations
describe the software implementation down to the pseudo-code level). The Bell and LaPadula model [4]
with the Biba model is used as the abstract model and the Multics Interpretation [4] is used as the concrete
model. The vendor has also provided the Security Model Interpretation [24] relating the state-transitioning
TCB interfaces and the corresponding rules to the basic 11 rules in the Multics Interpretation.

The team has carried out a manual review and analysis of the Security Model Interpretation, the DTLS,
and the Detailed Software Speci�cations. These documents are consistent with each other. Thus, the team
concludes that the DTLS is an accurate description of the TCB interface, the DTLS and implementation
are consistent with each other, and the elements of the DTLS correspond to the elements of the TCB.

The System Architecture document presents the argument that the kernel implements the reference monitor
concept and that the kernel is tamper-resistant and cannot be bypassed. In addition to the consistency

132
final: 3 August 2000

Final Evaluation Report Wang XTS-300
8.26. DESIGN DOCUMENTATION

among the Security Model, the DTLS, and the Detailed Software Speci�cations, testing will provide further
assurance that the kernel is correctly implemented.

The System Architecture document describes the TCB structure and presents a convincing argument that
the principle of least privilege is enforced. After reviewing the TCB structure described in the System
Architecture document, the team concluded that the TCB structure was designed to facilitate easy and
comprehensive testing.

The vendor provided a Covert Channel Analysis document [20] that identi�es the storage and timing channels.
The document also contains the computations of the bandwidths of these channels. The document further
identi�es the resource exhaustion events that must be audited to detect the potential exploitation of the
storage channels. Finally, the document provides a mechanism (time delays) to reduce the bandwidths of
the storage channels caused by resource exhaustions.

Conclusion

XTS-300 satis�es the B3 Design Documentation requirement.

133
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 8. EVALUATION AS A B3 SYSTEM

This page intentionally left blank

134
final: 3 August 2000

Final Evaluation Report Wang XTS-300

Chapter 9

Evaluator Comments

This section of the report contains some of the more personal comments of the evaluation team, particularly
those that deal with aspects of the system that do not directly a�ect the rating assigned. Some of the
comments expressed here may be of value to prospective users of the system and also to those responsible
for determining the suitability of this system in a particular application.

9.1 Knowledgeable, Cooperative Vendor

The advantages of working with an experienced, conscientious vendor should not be overlooked. Wang has
shown over and over again its dedication to providing a solid system that meets the TCSEC B3 requirement.
It worked closely and supportively with the team. The interaction with the vendor was exemplary, and
helped make this evaluation move more smoothly than it would have otherwise. Wang repeatedly brought
up issues that might reasonably be expected to be missed otherwise, even when deadlines were imminent
and without apparent regard to whether �xes might be easy or diÆcult. This re
ects Wang's dedication
to producing a secure product and gave the NSA part of the team added con�dence in the quality of the
RAMP and the security of XTS-300.

9.2 Technical Advantages

There are some positive technical aspects of the system that the team felt should be called to the reader's
attention. They are:

� The command and programming interface implementation is very close to standard UNIX

� The �le system is contained in the TCB, so that the TCB actually implements the protected objects
as opposed to an unusual and unique emulation layer

� The system uses a central, simple mechanism (mandatory integrity) to enforce administrative policies

� Users can optionally employ the mandatory integrity policy to protect �les and programs from tam-
pering.

9.3 The tdc Utility

Wang provides a tdc command which is used to verify that the product sent to the customer site is the one
received. The tdc command is executed by Wang on the release media before the system is shipped using a

135
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 9. EVALUATOR COMMENTS

release distribution key. A 16-bit Cyclic Redundancy Check (CRC) is used and the checksum is encrypted.
The release media, distribution key, and resulting checksum are shipped separately to the customer site. It
is intended that the customer then apply the tdc command to the release media and compare the checksum
generated to the one that was shipped. The tdc command, while it provides some measure of assurance
concerning the delivered system, does not provide adequate assurance to satisfy the trusted distribution A1
level requirement.

9.4 User Interface

The team has some concerns about the clumsiness of the user interface exhibited by the Trusted Commands.
While this may arise inevitably from the security requirements, some team members feel the interface could
be improved. Some of the problems the team found are:

� Only a single command, request, or parameter can be entered on a line, with no provisions for type-
ahead.

� Some commands seem unnecessarily verbose in their output; for example, the audit and param edit
commands list all possible audit events under some circumstances when it is deemed unnecessary, but
there is no way to avoid the several screens of output.

9.5 Need for Unevaluated Applications or CASS

The evaluated system has no direct user interface, other than through the trusted processes. While this
reduces the complexity of the evaluation, it does place a burden on the site administration. It is clear that
a site will, of necessity, use CASS, or provide some unevaluated software as the user interface.

9.6 Password Checking

The system o�ers no automatic password generation schemes, nor does it check for weak passwords chosen by
the user. However, the system does check for a minimum password length of six characters and a maximum
length of 15 characters.

9.7 Limited Number of ACLs

A user is limited to a maximum of seven distinct ACL entries that can be used to designate an individual
user or a group. This seems to be a restrictively small number given the potential number of customers for
a system such as this, some of whom may wish to employ the system with a large number of users.

136
final: 3 August 2000

Final Evaluation Report Wang XTS-300
9.8. ONE SYSTEM SYNC INTERVAL

9.8 One System Sync Interval

The amount of audit data that is subject to loss in the event of a system failure depends on the length of
the system sync interval. This sync interval determines how frequently disk blocks are written to disk. If the
value is small, system activity increases and performance may be adversely a�ected. The team suggested to
Wang that two values be used for the system sync process: one value would apply to audit segments while
the other would apply to the rest of the system. The team recommended to the vendor that this feature be
incorporated into future versions of the system.

9.9 Audit

Experience during testing has shown that the audit system was designed to just meet the requirements.
There are diÆculties in e�ectively using the audit system to analyze information. An o�-line analysis tool
and more high-level information in the audit trail would be useful, but are not provided by the vendor in the
evaluated con�guration, nor is there any way (using the TCB) to capture the audit information in human
readable form.

137
final: 3 August 2000

Final Evaluation Report Wang XTS-300
CHAPTER 9. EVALUATOR COMMENTS

This page intentionally left blank

138
final: 3 August 2000

Final Evaluation Report Wang XTS-300

Appendix A

Evaluated Hardware Components

Wang Government Services, Incorporated markets the evaluated system as XTS-300. The hardware com-
ponents are given individual identi�ers by the manufacturer. Rather than list all the available components,
this appendix summarizes the hardware.

A.1 The Intel Pentium II/III Motherboard

The motherboard used on the Intel Pentium II/III hardware base is the Intel R440LX (LX) or the
L440GX+/L440GXC (GX) and contains the following components:

� Intel 300 MHz Pentium II or 500 MHz Pentium III

� Intel 82443LX (LX) or 82443GX (GX) PCI/AGP Controller (PAC)

� Intel 82371AB (LX) or 82371EB (GX) PCI-ISA Bridge (PIIX4)

� National Semiconductor PC87307 (LX) or PC87309 (GX) Super I/O

� Adaptec AIC-7880 (LX) or AIC-7896 (GX) SCSI Host Adapter

� Cirrus Logic CL-GD5446 (LX) or CL-GD5480 Video Controller

� Intel NIC chip

� BIOS

� 64 - 512 Mbyte RAM

A.2 Additional Controller Boards

� Optional Applied Digital Four-Port Interface SIO4 Controller Card

� Optional Znyx two (ZX348/ZX348Q) or four (ZX346/ZX346Q) port NetBlaster LAN Adapter

� Optional add-in Adaptec AHA-2940U or AHA-2940U2W SCSI Host Adapter

139
final: 3 August 2000

Final Evaluation Report Wang XTS-300
APPENDIX A. EVALUATED HARDWARE COMPONENTS

A.3 Generic Devices

The items on this list have been speci�ed in a generic manner.

� Generic 101-key standard, 104-key standard or laptop-style Keyboard

� VGA monitor or
at panel display

� 3-button, PS/2 or serial mouse/touchpad

� terminal (see below)

� dumb printer (see below)

A.4 Terminals

Those terminals used in an evaluated system must have certain characteristics. These characteristics are
de�ned in the Trusted Facility Manual (TFM) and summarized below:

� Provide a keyboard and a video display.

� Provide a correct association between the user's actions of depressing keyboard keys and transmitting
the ASCII representations of those keys via the communications interface.

� Provide a direct means of generating an out-of-band BREAK signal that can be used to initiate the
trusted path for communicating directly with the TCB. This BREAK signal is de�ned by the serial
communication interface.

{ It must not be able to generate the BREAK signal in response to any sequence of signals sent
from the system.

{ Its ability to generate a BREAK signal cannot be inhibited by any sequence of signals sent from
the system. The same conditions should exist if this BREAK signal were an in-band ASCII
character or sequence of characters.

� Provide a means to set and clear the Data Terminal Ready (DTR) signal and the Carrier Detect signal
to indicate the presence or absence of a properly working terminal attached to the TCB's hardware.

{ The DTR and Carrier Detect signals are de�ned by the serial communication interface.

{ The DTR and Carrier Detect signals can be provided by the terminal itself (power on or o� signal)
or by an external mechanism interposed between the terminal and the TCB's hardware interface.

� Provide a correct association between the ASCII characters transmitted from the system and their
displayed or printed human-readable printed representations.

� Provide the means for the terminal user to clear any internal or external storage associated with the
terminal between user sessions. This includes clearing the screen display, programmable function keys,
bu�er memory, printer paper, and local disk. It is the responsibility of the user or local computer
security administrative personnel to ensure that this action be exercised between user sessions.

140
final: 3 August 2000

Final Evaluation Report Wang XTS-300
A.5. PRINTERS

If it is possible to program (either under user or system control) any characteristics of the terminal connected
to the TCB (such as correspondence between keystrokes and transmitted characters).

� The means for doing so must be fully documented and available to the user.

� It must be possible for the terminal user to return all programmable characteristics to a default or
well-known state.

� It is the user's responsibility to ensure that the terminal is appropriately reset to known characteristics
any time the user invokes the trusted path if the terminal's programmable characteristics can be set by
untrusted code. It is the responsibility of the user or local computer security administrative personnel
to ensure that appropriate procedures for doing this be de�ned.

There is additional guidance in the TFM concerning terminals with advanced features. An example of such
a terminal is a terminal of type VT100 or VIP7800. No terminal emulators are supported in the evaluated
con�guration.

A.5 Printers

The following describes the generic, dumb printers that are supported as system printers connected to
asynchronous communication lines:

Any parallel or any serial printer that uses XON/XOFF for
ow control, it must accept printable ASCII data
and does not require special initialization sequences. Acceptable ASCII data includes the ASCII character
set and control characters, such as <CR>, <LF>, null, XON/XOFF, and excludes printers that have special
graphics modes such as postscript printers. An example of such a printer is the Epson FX80 dot matrix
printer with a serial interface. As long as the printer does not support Postscript or any other interpretive
language (with the exception of the PCL-5 printer mentioned below), it can be included in the evaluated
con�guration.

A single PCL-5 printer is also available in the evaluated con�guration: the Hewlett-Packard 4000. Special
administrative procedures are required when a PCL-5 printer is included in the con�guration.

A.6 Additional Devices

� IBM Ultrastar SCSI hard disk drives (4.5 Gbyte, 9.1 Gbyte, 18.3 Gbyte, and 36.7 Gbyte) Models 9ES,
18ES, 9ZX, 18ZX, 9LZX, 18LZX, 36LZX, 9LP, 18XP, and 36XP.

� WangDAT 3400DX 4mm DAT SCSI tape drive

� Hewlett Packard 1554A 4mm DAT SCSI tape drive

� Toshiba XM-6401B (tray loading) internal SCSI CD-ROM drive

� Spyrus RD400S2C1I SCSI PC Card reader, internal, dual-slot (MS-MCDISK-E-1)

� Litronic 2108 SCSI PC card reader, external eight-slot (CipherServer)

� Fairchild Defense Data Transfer Cartridge Reader

141
final: 3 August 2000

Final Evaluation Report Wang XTS-300
APPENDIX A. EVALUATED HARDWARE COMPONENTS

A.7 Acceptable Hardware Changes

In recognition of the rapid pace at which hardware components are revised, a category of insigni�cant
hardware changes has been established. Changes categorized as insigni�cant are regarded as having no
a�ect on the security policy of the system or the B3 rating. That is, hardware component revisions are
considered to be acceptable in the evaluated con�guration, if the changes fall into the category of changes
listed below. The speci�c components listed above serve to document those speci�cally investigated by the
evaluation team. Site personnel who wish to verify that the changes to hardware components fall into the
category listed below should contact Wang. Any revision to a hardware component that incorporates changes
beyond those listed below is not acceptable in the evaluated con�guration. Use of hardware components
that contain such revisions invalidates the B3 rating for the XTS-300 system.

The following is a list of acceptable changes to hardware components:

� Any changes to the system power supply, cooling fans, case/card cage, or cords;

� Changes in the fastening mechanism, arrangement, or orientation of any component or subcomponent;

� Changes to the color, weight, size, shape of any component or subcomponent;

� Any change to \non-chip" board components (such as resisters and capacitors) or to the number of
such components;

� Changes to the voltage requirements/tolerances or electrical signal pro�les input or output by any
component or subcomponent.

142
final: 3 August 2000

Final Evaluation Report Wang XTS-300

Appendix B

Evaluated Software Components

The following are the components of STOP 5.2.E that comprise the evaluated the Trusted Computing Base
(TCB):

� Security Kernel

� TCB System Services (TSS)

� Trusted Software

The Commodity Application System Services (CASS), although a portion of STOP 5.2.E shipped with the
system, are not part of the TCB and were not evaluated.

143
final: 3 August 2000

Final Evaluation Report Wang XTS-300
APPENDIX B. EVALUATED SOFTWARE COMPONENTS

This page intentionally left blank

144
final: 3 August 2000

Final Evaluation Report Wang XTS-300

Appendix C

Draft Evaluated Products List Entry

DATE: 30 April 2000

MAINTAINED PRODUCT: XTS-300 Release 5.2.E

PREVIOUS PRODUCTS: XTS-300 Release 4.4.2
XTS-300 Release 4.1a
XTS-300 Release 4.1
XTS-200 Release 3.2.E
XTS-200 Release 3.1.E

VENDOR: Wang Government Services, Inc.

EVALUATION CLASS: B3

C.1 Product Description

The XTS-300 product is a combination of STOP 5.2.E, a multilevel secure operating system, and a Wang
supplied x86 hardware base. (STOP is not licensed to run on non-Wang supplied hardware and would lose
its evaluated status if that was attempted.) STOP is a multiprogramming system that can support terminal
connections for up to 19 users. Up to 200 processes can run concurrently, each with up to four gigabytes of
virtual memory. STOP is designed not only to support much of the UNIX System V interface for applications
software, but to produce and run object programs that adhere to a subset of the \Intel386 Family Binary
Compatibility Speci�cation 2" as well.

An X-windows graphical user interface (GUI) is supported by the TCB. It is available at the console for
work by untrusted users. Trusted path initiation causes suspension of the GUI and trusted commands can
not be run from the GUI. All windows on the display are at the same level and multi-level cut-and-paste is
not supported.

Network connectivity is allowed in the evaluated con�guration. TCP/IP and Ethernet are built in to the
Trusted Computing Base, but no network servers (e.g., SMTP) are within the TCB. Within an evaluated
con�guration, network attachments must be made according to rules in the Trusted Facility Manual (e.g.,
the network must be single-level while multiple networks can each be at a di�erent level). The TCB can not
be compromised by remote users or unusual network traÆc, but the TCB itself, like most systems, does not
prevent disclosure of, or loss of integrity by, data on the network.

STOP consists of four components: the Security Kernel, which operates in the most privileged ring and
provides all mandatory, subtype, and a portion of the discretionary, access control; the TCB System Services,
which operate in the next-most-privileged ring, and implements a hierarchical �le system, supports user I/O,

145
final: 3 August 2000

Final Evaluation Report Wang XTS-300
APPENDIX C. DRAFT EVALUATED PRODUCTS LIST ENTRY

and implements the remaining discretionary access control; Trusted Software, which provides the remaining
security services and user commands; and Commodity Application System Services (CASS), which operate
in a less privileged ring and provides the UNIX-like interface. CASS is not in the TCB.

The XTS-300 is hosted on Intel Pentium II or Pentium III based server class systems, available in tower,
rack-mount and tempest form factors. The XTS-300 uses speci�c Intel-brand motherboards and industry
standard ISA and PCI peripheral cards or chips built into the motherboard. The XTS-300 product is a
combination of the STOP 5.2.E multilevel secure operating system and a Wang supplied hardware base.
(STOP is not licensed to run on non-Wang supplied hardware and the system would lose its evaluated status
if that was attempted.)

STOP provides support for peripherals such as:

� Ultra2Wide hard disks (4.5GB to 36.4GB)

� CD ROMs

� PCMCIA/PC-Card readers supporting Fortezza encryption devices

� Tape drives to 24GB

� SVGA video including UNIX's X-Windows

� Floppy disk

� TCP/IP based 10 or 100BaseT networks

� Fairchild-proprietary data transfer cartridges (DTCR)

� Serial or parallel printers

� Mouse or Touchpad

� Keyboard

The system provides mandatory access control (MAC) that allows for both a security and integrity policy.
The mandatory security policy enforced by the XTS-300 is based on the Bell and LaPadula security model;
the mandatory integrity policy is based on the Biba integrity model. The system implements discretionary
access control (DAC) and provides for user identi�cation and authentication needed for user ID-based policy
enforcement. The system also provides an additional policy mechanism, \subtypes," which is not required
by the Trusted Computer System Evaluation Criteria and which can be used in a customer-speci�c way in
conjunction with MAC and DAC controls.

Individual accountability is provided with an auditing capability. Data scavenging is prevented through
object reuse prevention mechanisms. A trusted path mechanism is provided by the implementation of a
Secure Attention Key (SAK).

The separation of administrator and operator roles is enforced using the integrity policy. The system enforces
the \principle of least privilege" (i.e., users should have no more authorization than that required to perform
their functions) for administrator and operator roles. All actions performed by privileged (and normal) users
can be audited. The audit log is protected from modi�cation using integrity and subtype mechanisms. STOP
also provides an alarm mechanism to detect the accumulation of events that indicate an imminent violation
of the security policy.

146
final: 3 August 2000

Final Evaluation Report Wang XTS-300
C.2. PRODUCT STATUS

The TCB exhibits strong architectural characteristics: minimization, layering, abstraction, and data hiding.
The TCB makes use of hardware features to provide process separation and TCB isolation and has been
designed and implemented to resist penetration. The system design is based on a security model and a
descriptive top-level speci�cation.

C.2 Product Status

The STOP operating system was developed by (and is marketed and supported by) Wang Government
Services, Inc. (hereafter referred to as Wang). Release 5.2.E of the XTS-300 can be ordered after May 1,
2000. Orders can be placed with:

Mike Focke
XTS Product Manager
Wang Government Services, Inc.
7900 Westpark Drive
McLean, Virginia 22102
(703) 464{8754
Internet: mike.focke@wang.com

C.3 Product Changes Since Previous Evaluation/RAMP Action

The following major enhancements have been added to the TCB since the last RAMP:

� Support for the Pentium-II and Pentium-III platforms

� Multi-processor support (up to two 500MHz Pentium-III processors)

� Support for synchronous SCSI access

� Support for SCSI speeds/connections through Ultra2Wide (80Mb/sec)

� Support for large disks up to 36.4GB

� Litronic Cipher-Server

� Support for Parallel laser printers

� Support for 100BaseT network cards

� Support for a Fast File system

� Support for new video controllers

� Support for a larger (24GB) tape drive

� Up to 862MB of main memory is now allowed

147
final: 3 August 2000

Final Evaluation Report Wang XTS-300
APPENDIX C. DRAFT EVALUATED PRODUCTS LIST ENTRY

C.4 Security Evaluation Summary

The security protection provided by the original product, XTS-200 release 3.1.E, was evaluated by the
National Security Agency (NSA) against the requirements speci�ed by the Department of Defense Trusted
Computer System Evaluation Criteria [DOD 5200.28-STD] dated December 1985. The NSA evaluation team
determined that the system satis�ed all the speci�ed requirements of the Criteria at class B3. The original
evaluation was completed in May 1992. The original product was produced by Honeywell Federal Systems
Inc. (HFSI), which has since been acquired by Wang.

XTS-300 release 5.2.E is based on release 4.4.2 of the XTS-300, which was in turn based on release 4.1a of
the XTS-300. Release 4.1a successfully completed a Ratings Maintenance Phase (RAMP) action in October
1995. Release 4.4.2 successfully completed a RAMP action in March 1998.

To RAMP release 5.2.E of the XTS-300, the vendor maintained the security properties of release 4.4.2,
performed con�guration management of the changes, and enhanced the security test suite and the system
documentation appropriately. The security protection provided by XTS-300 release 5.2.E has been evaluated
against the requirements speci�ed in the Criteria by a joint NSA/vendor security analysis team (SA-team).
The SA-team has also evaluated the system change procedures followed by the vendor against the B2+
RAMP requirements in the RAMP Program Document dated March 1995.

The SA-team has determined that release 5.2.E of the XTS-300 satis�es all the speci�ed requirements of
the Criteria at class B3 and that the vendor satis�ed all the B2+ RAMP requirements. The conclusions of
the SA-team have been reviewed and approved by NSA. For a complete description of how XTS-300 release
5.2.E satis�es each requirement of the Criteria, see Final Evaluation Report, Wang Government Services,
Inc., XTS-300 (Report CSC-EPL-92/003.E).

The Final Evaluation Report should be consulted for the complete lists of evaluated hardware and software
components.

C.5 Environmental Strengths

The XTS-300 is a general-purpose computer system. The B3 rating implies not only incorporation of
particular security features, but a very high level of assurance. This level of assurance should allow the XTS-
300 to be accredited to handle data at a wide range of classi�cation levels in a wide range of environments.
Several certi�cation and accreditation e�orts have been completed that use the XTS-300 as a multi-level
application platform.

The XTS-300 is general-purpose in that it can be used for a range of purposes from multi-user workstation,
rack-mount and tempest variants to guard/gateway. With additional application support, it is suitable as
a network server or �rewall. Since the XTS-300 is based on commodity hardware, it is positioned to take
advantage of the frequent hardware advances in the x86 hardware base and in the SCSI subsystem.

Beyond the minimal requirements for a B3 system, the XTS-300 provides a mandatory integrity policy, an
extra subtype policy, a familiar, Unix-like environment for single-level applications, and secure distribution
tools. Integrity can be used for, among other things, virus protection. The Unix-like environment supports
binary compatibility and will run many programs imported from other systems without recompilation or
with minor porting.

148
final: 3 August 2000

Final Evaluation Report Wang XTS-300

Appendix D

Acronyms

AC Alignment Check

ACK Acknowledgement

ACL Access Control List

ADDR Address

ADP Automated Data Processing

ADT Active Device Table

ADTE Active Device Table Entry

AF Auxiliary Carry Flag

AM Associative Memory; Alignment
Mask

ANSI American National Standards
Institute

APT Active Process Table

APIC Advanced Programmable
Interval Controller

APTE Active Process Table Entry

ASCII American Standard Code for
Information Interchange

AST Active Segment Table

ASTE Active Segment Table Entry

AT&T American Telephone and
Telegraph

BCS Binary Compatibility Standard

bps Bits per second

BIOS Basic Input/Output System

CAM Content Addressable Memory
(associative cache)

CASS Commodity Application System
Services

CCA Covert Channel Analysis

CCB Con�guration Control Board

CD Cache Disable

CF Carry Flag

CLE Connection List Entry

COTS Commercial-o�-the-shelf

CPL Current Privilege Level

CPU Central Processing Unit

CR Carriage Return

CS Current Segment; Code Segment

CTE Channel Table Entry

CUP Change User Password

DAC Discretionary Access Control

DAP Design Analysis Phase

DBC Data Bus Controller

DBTE Device Branch Table Entry

DCE Data Circuit-Terminating
Equipment

DCTE Device Control Table Entry

DD Duplicate Directory

DES Data Encryption Standard

DF Direction Flag

DMA Direct Memory Addressing

DMA/R DMA/Refresh Controller

DOD Department of Defense

DPA Dataproduct Printer Adapter

DPL Descriptor Privilege Level

149
final: 3 August 2000

Final Evaluation Report Wang XTS-300
APPENDIX D. ACRONYMS

DS Data Segment

DTE Device Table Entry

DTLS Descriptive Top-Level
Speci�cation

E-CACHE Data Cache

EBC EISA Bus Controller

EEPROM Electrically Erasable
Programmable Read-Only
Memory

EIP Instruction Pointer Register

EISA Extended Industry Standard
Architecture

EM Emulation

EPL Evaluated Products List

ES Data Segment

FCA Filesystem Control Area

FD File Descriptor

FIFO First-In First-Out

FPU Floating Point Unit

FS File System; Data Segment

FTE File Table Entry

G Granularity

Gbyte Gigabyte (230 bytes)

GDTR Global Descriptor Table Register

GLINK Terminal Emulation Package

GS Data Segment

HFS (Not an acronym. Formerly:
Honeywell Federal Systems)

HFSI HFS Incorporated

I-CACHE Instruction Cache

I/O Input/Output

I/OAT43 Serial/Parallel Adapter Card

ID Identi�cation/Identi�er

IDT Interrupt Descriptor Table

IDTR Interrupt Descriptor Table
Register

IF Interrupt-enable Flag

IEEE IEEE

IO Input/Output

IOPL I/O Privilege Level

IOQE I/O Queue Entry

IP Internet Protocol

IPAR Initial Product Assessment
Report

IPC Interprocess Communication

IRQ Interrupt Request

ISA Industry Standard Architecture

ISC Intelligent SCSI Controller

ISMn Interrupt Save Mask n

ISN Internal Software Note

ISO International Organization for
Standards

ISP Integrated System Peripheral

Kbyte Kilobyte (210 bytes)

KC Keyboard Controller

KDT Known Device Table

KDTE Known Device Table Entry

KST Known Segment Table

KSTE Known Segment Table Entry

LDD Logical Device Data

LDTR Local Descriptor Table Register

LF Line Feed

150
final: 3 August 2000

Final Evaluation Report Wang XTS-300

MAC Mandatory Access Control

Mbyte Megabyte (220 bytes)

MCC Memory/Cache Controller

MP Math Present

MSB Most Signi�cant Bit

MSG Message Signal

MTE Mount Table Entry

NAK Negative Acknowledgement

NATO North Atlantic Treaty
Organization

NCSC National Computer Security
Center

NE Numeric Error

NMI Non-Maskable Interrupt

NSA National Security Agency

NT Nested Task

NVM Non-Volatile Memory

NW Not Write-through

OF Over
ow Flag

OSS Operating System Services

PADT Previously Active Device Table

PC Program Counter (Hardware);
IBM Personal Computer or
compatible (Testing)

PCD Page-level Cache Disable

PD Page Descriptor

PDIR Paging Directory

PDS Process Descriptor Segment

PE Protection Enable

PF Parity Flag

PG Paging Bit

PIC Programmable Interrupt
Controller

PID Process ID

PIT Programmable Interval Timer

PLDS Process Local Data Segment

POSIX Portable Operating System
Interface for Computer Systems

POST Power-On and System Reset

PRA Line Printer Adapter

PROM Programmable Read Only
Memory

PT Process Type

PTE Page Table Entry

PTR Preliminary Technical Review

PWT Page-level Writes Transparent

QIC Quarter-Inch Cartridge

R Read Indicator

RAM Random Access Memory

RAMP Rating Maintenance Phase

RF Resume Flag

RN Ring Number

ROM Read Only Memory

RPL Requestor's Privilege Level

RST Reset

RTC Real Time Clock

SA System Arbiter

SAK Secure Attention Key

SBTE Segment Branch Table Entry

SCCS Source Code Control System
(UNIX utility)

SCOMP Secure Communications
Processor

151
final: 3 August 2000

Final Evaluation Report Wang XTS-300
APPENDIX D. ACRONYMS

SCSI Small Computer Systems
Interface

SD Segment Descriptor

SF Sign Flag

SFUG Security Features User's Guide

SG Set Group

SL Set Level

SS Stack Segment

SSEG Secure Systems Engineering
Group

STD Standard

STOP (not an acronym)

SW Software

Tbyte Terabyte (240 bytes)

TCB Trusted Computing Base

TCP Transmission Control Protocol

TCP/IP Transmission Control
Protocol/Internet Protocol

TCSEC Trusted Computer System
Evaluation Criteria

TDC Time of Day Clock

TF Trap Flag

TFM Trusted Facility Manual

TI Table Indicator

TR Task Register

TRB Technical Review Board

TPRM Trusted Programmer's Reference
Manual

TS Task Switched

TSC Time Slice Clock

TSKSS Task State Segment

TSS TCB System Services

U/S User/Supervisor

UART Universal Asynchronous
Receiver and Transmitter

uid Unique Identi�er

VA Virtual Address

VAP Vendor Assistance Phase

VM Virtual 8086 Mode

WP Write Protect

ZF Zero Flag

152
final: 3 August 2000

Final Evaluation Report Wang XTS-300

153
final: 3 August 2000

Final Evaluation Report Wang XTS-300
APPENDIX D. ACRONYMS

This page intentionally left blank

154
final: 3 August 2000

Final Evaluation Report Wang XTS-300

Appendix E

Bibliography and References

[1] Addison-Wesley. System BIOS for IBM PCs, Compatibles, and EISA Computers: The Complete
Guide to ROM-Based System Software. Reading, MA, 1991.

[2] American National Standards Institute: X3, Information Processing Systems. American
National Standards for Information Systems: Programming Language C. Washington, D.C., February
1990. X3J11/90-013.

[3] American Telephone and Telegraph (AT&T). AT&T System V Interface De�nition, Issue 2,
1986. (three volumes).

[4] Bell, D. E., and LaPadula, L. J. Computer Security Model: Uni�ed Exposition and Multics
Interpretation. Technical Report ESD-TR-75-306, The MITRE Corporation, Bedford, MA, June 1975.

[5] Biba, K. J. Integrity Considerations for Secure Computer Systems. Technical Report
ESD-TR-76-372, The MITRE Corporation, Bedford, MA, April 1977.

[6] Crawford & Gelsinger. Programming the 80386. Sybex, Alameda, CA, 1987.

[7] Institute of Electrical and Electronics Engineers. ISO/IEC 9945-1: 1990 (IEEE Std
1003.1990) Information Technology-Portable Operating System Interface (POSIX) { Part 1: System
ApplicationProgram Interface (API). New York, NY, 1990. IEEE Standard 1003.1990.

[8] Intel Corporation. Intel386 Family Binary Compatibility Speci�cation 2. Santa Clara, CA. Order
Number 468366-001.

[9] Intel Corporation. Intel 486 Microprocessor Family Programmer's Reference Manual. Mt.
Prospect, IL, 1992.

[10] Megatrends. ISA and EISA: Hi-Flex AMIBIOS Technical Reference. Norcross, GA, 1993.

[11] National Computer Security Center. Department of Defense Trusted Computer System
Evaluation Criteria. Linthicum, MD, December 1985. DoD 5200.28-STD.

[12] National Computer Security Center. Final Evaluation Report: Honeywell Multics MR11.0.
Linthicum, MD, June 1985. CSC-EPL-85/003.

[13] National Computer Security Center. Final Evaluation Report: Secure Communications
Processor (SCOMP) STOP Release 2.1. Linthicum, MD, September 1985. CSC-EPL-85/001.

[14] National Computer Security Center. Final Evaluation Report: HFS Incorporated XTS-200.
Linthicum, MD, January 1994. CSC-EPL-92/003.A.

[15] Wang Federal, Inc. STOP Release 3.1, TCB Test Coverage Analysis, XTS-300. McLean, VA,
June 1991. Document No. FS91-511, Rev. 2.

155
final: 3 August 2000

Final Evaluation Report Wang XTS-300
APPENDIX E. BIBLIOGRAPHY AND REFERENCES

[16] Wang Federal, Inc. STOP Release 4.1, Descriptive Top-Level Speci�cation, XTS-300. McLean,
VA, 1994. Document No. FS94-275-00.

[17] Wang Federal, Inc. XTS-300 System Integrity Installation and User's Manual. McLean, VA, April
1995. Document No. FS92-377-03.

[18] Wang Government Services, Inc. C Coding Standards TCB. McLean, VA, June 1999. Version
2.0.

[19] Wang Government Services, Inc. Rating Maintenance Plan XTS-200/XTS-300. McLean, VA,
April 2000. Document No. FS92-361.

[20] Wang Government Services, Inc. STOP Release 5.2.E, Covert Channel Analysis XTS-300.
McLean, VA, April 2000.

[21] Wang Government Services, Inc. STOP Release 5.2.E, Detail Speci�cation, Security Kernel
Software. McLean, VA, April 2000. Document No. FS94-278.

[22] Wang Government Services, Inc. STOP Release 5.2.E, Detail Speci�cation, TCB System
Services. McLean, VA, April 2000. Document No. FS94-279.

[23] Wang Government Services, Inc. STOP Release 5.2.E, Detail Speci�cation, Trusted Software.
McLean, VA, April 2000. Document No. FS94-280.

[24] Wang Government Services, Inc. STOP Release 5.2.E, Security Model Interpretation, XTS-300.
McLean, VA, April 2000. Document No. FS94-281.

[25] Wang Government Services, Inc. STOP Release 5.2.E, System Architecture, XTS-300. McLean,
VA, April 2000. Document No. FS94-276.

[26] Wang Government Services, Inc. STOP Release 5.2.E, TCB Test Plan, XTS-300. McLean, VA,
April 2000. Document No. FS94-284.

[27] Wang Government Services, Inc. STOP Release 5.2.E, TCB Test Procedures Vol. 1, XTS-300.
McLean, VA, April 2000. Document No. FS94-284.

[28] Wang Government Services, Inc. STOP Release 5.2.E, TCB Test Procedures Vol. 2, XTS-300.
McLean, VA, April 2000. Document No. FS94-284.

[29] Wang Government Services, Inc. STOP Release 5.2.E, TCB Test User's Guide, XTS-300.
McLean, VA, April 2000. Document No. FS94-283.

[30] Wang Government Services, Inc. XTS-200/XTS-300 Con�guration Management Plan. McLean,
VA, May 2000. Document No. FS93-161.

[31] Wang Government Services, Inc. XTS-300 Application's Programmer's Reference Manual.
McLean, VA, April 2000. Document No. FS92-374.

[32] Wang Government Services, Inc. XTS-300 STOP Release 5.2.E Software Release Bulletin.
McLean, VA, April 2000. Document No. FB90-129.

[33] Wang Government Services, Inc. XTS-300 Trusted Facility Manual. McLean, VA, April 2000.
Document No. FS92-371.

156
final: 3 August 2000

Final Evaluation Report Wang XTS-300

[34] Wang Government Services, Inc. XTS-300 Trusted Programmer's Reference Manual. McLean,
VA, April 2000. Document No. FS92-375-02.

[35] Wang Government Services, Inc. XTS-300 User's Manual. McLean, VA, April 2000. Document
No. FS92-373.

[36] Wright, G. R., and Stephens, W. R. TCP/IP Illustrated Volume 2. Addison-Wesley Publishing
Company., Reading, MA, 1995.

157
final: 3 August 2000

